Loading…
Out-of-Control Multivariate Patterns Recognition Using D2 and SVM: A Study Case for GMAW
Industrial processes seek to improve their quality control, including new technologies and satisfying requirements for globalised markets. In this paper, we present an innovative method based on Multivariate Pattern Recognition (MVPR) and process monitoring in a real-world study case. By identifying...
Saved in:
Published in: | Mathematics (Basel) 2021-02, Vol.9 (5), p.467 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Industrial processes seek to improve their quality control, including new technologies and satisfying requirements for globalised markets. In this paper, we present an innovative method based on Multivariate Pattern Recognition (MVPR) and process monitoring in a real-world study case. By identifying a distinctive out-of-control multivariate pattern using the Support Vector Machines (SVM) and the Mahalanobis Distance D2 it is possible to infer the variables that disturbed the process; hence, possible faults can be predicted knowing the state of the process. The method is based on our previous work, and in this paper we present the method application for an automated process, namely, the robotic Gas Metal Arc Welding (GMAW). Results from the application indicate an overall accuracy up to 88.8%, which demonstrates the effectiveness of the method, which can also be used in other MVPR tasks. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9050467 |