Loading…

A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography

Phantom experiments are an important step for testing during the development of new hardware or imaging algorithms for head electrical impedance tomography (EIT) studies. However, due to the sophisticated anatomical geometry and complex resistivity distribution of the human head, constructing an acc...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-07, Vol.7 (1), p.4608-9, Article 4608
Main Authors: Zhang, Jie, Yang, Bin, Li, Haoting, Fu, Feng, Shi, Xuetao, Dong, Xiuzhen, Dai, Meng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-7f2ab1f475b9d54f33eac91c5d2cf839114baaa81430e109557d75d5bafabbc63
cites cdi_FETCH-LOGICAL-c540t-7f2ab1f475b9d54f33eac91c5d2cf839114baaa81430e109557d75d5bafabbc63
container_end_page 9
container_issue 1
container_start_page 4608
container_title Scientific reports
container_volume 7
creator Zhang, Jie
Yang, Bin
Li, Haoting
Fu, Feng
Shi, Xuetao
Dong, Xiuzhen
Dai, Meng
description Phantom experiments are an important step for testing during the development of new hardware or imaging algorithms for head electrical impedance tomography (EIT) studies. However, due to the sophisticated anatomical geometry and complex resistivity distribution of the human head, constructing an accurate phantom for EIT research remains challenging, especially for skull modelling. In this paper, we designed and fabricated a novel head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution based on 3D printing techniques. The skull model was constructed by simultaneously printing the distinct layers inside the skull with resistivity-controllable printing materials. The entire phantom was composed of saline skin, a 3D-printed skull, saline cerebrospinal fluid (CSF) and 3D-printed brain parenchyma. The validation results demonstrated that the resistivity of the phantom was in good agreement with that of human tissue and was stable over time, and the new phantom performed well in EIT imaging. This paper provides a standardized, efficient and reproducible method for the construction of a head phantom for EIT that could be easily adapted to other conditions for manufacturing head phantoms for brain function research, such as transcranial direct current stimulation (TDCS) and electroencephalography (EEG).
doi_str_mv 10.1038/s41598-017-05006-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f419aac6fb2c4ff2ac2693d5f79244a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f419aac6fb2c4ff2ac2693d5f79244a1</doaj_id><sourcerecordid>1916382558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-7f2ab1f475b9d54f33eac91c5d2cf839114baaa81430e109557d75d5bafabbc63</originalsourceid><addsrcrecordid>eNp1kstuFDEQRVsIRKKQH2CBLLFh0-Bnd3uDFIVXpEhsYG1V-9HjwWMPdveg-Rs-FU8mRBMkvHGpfOuUq3Sb5iXBbwlmw7vCiZBDi0nfYoFx1w5PmnOKuWgpo_TpSXzWXJayxvUIKjmRz5szOnR918n-vPl9hWLa2YDYh3abfZytQSsLBm1XEOe0Qb_8vEIQocZeQwh7lC0EX2av0WTTxs55X98N0inOPi5pKVWzg7z3cULlxxJCrSiHgp2f98jUKPtxmX2KyKWMbLC6Ziob-c3WGojaototTRm2q_2L5pmDUOzl_X3RfP_08dv1l_b26-eb66vbVguO57Z3FEbieC9GaQR3jFnQkmhhqHYDk4TwEQAGwhm2BEshetMLI0ZwMI66YxfNzZFrEqxVXcWmjqASeHWXSHlSkOvQwSpXlwigOzdSzV1trGknmRGul5RzIJX1_sjaLuPGGm3jnCE8gj5-iX6lprRTgstukAfAm3tATj8XW2a18UXbECDaumBFJOnYQIUYqvT1P9J1WnKsq6oq0WHGmGRVRY8qnVMp2bqHzxCsDn5SRz-p6id15yd1QL86HeOh5K97qoAdBeVgncnmk97_x_4BLqvcAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956033393</pqid></control><display><type>article</type><title>A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Jie ; Yang, Bin ; Li, Haoting ; Fu, Feng ; Shi, Xuetao ; Dong, Xiuzhen ; Dai, Meng</creator><creatorcontrib>Zhang, Jie ; Yang, Bin ; Li, Haoting ; Fu, Feng ; Shi, Xuetao ; Dong, Xiuzhen ; Dai, Meng</creatorcontrib><description>Phantom experiments are an important step for testing during the development of new hardware or imaging algorithms for head electrical impedance tomography (EIT) studies. However, due to the sophisticated anatomical geometry and complex resistivity distribution of the human head, constructing an accurate phantom for EIT research remains challenging, especially for skull modelling. In this paper, we designed and fabricated a novel head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution based on 3D printing techniques. The skull model was constructed by simultaneously printing the distinct layers inside the skull with resistivity-controllable printing materials. The entire phantom was composed of saline skin, a 3D-printed skull, saline cerebrospinal fluid (CSF) and 3D-printed brain parenchyma. The validation results demonstrated that the resistivity of the phantom was in good agreement with that of human tissue and was stable over time, and the new phantom performed well in EIT imaging. This paper provides a standardized, efficient and reproducible method for the construction of a head phantom for EIT that could be easily adapted to other conditions for manufacturing head phantoms for brain function research, such as transcranial direct current stimulation (TDCS) and electroencephalography (EEG).</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-05006-8</identifier><identifier>PMID: 28676697</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/245/2221 ; 631/61/2049/974 ; 692/700/1421/65 ; Cerebrospinal fluid ; Computer Simulation ; EEG ; Electric Impedance ; Electrical impedance ; Electrical stimulation of the brain ; ESB ; Geometry ; Head ; Head - anatomy &amp; histology ; Humanities and Social Sciences ; Humans ; Impedance ; Medical imaging ; Models, Anatomic ; multidisciplinary ; Neuroimaging ; Parenchyma ; Phantoms, Imaging ; Printing ; Printing, Three-Dimensional ; Science ; Science (multidisciplinary) ; Skin ; Skull ; Skull - anatomy &amp; histology ; Tomography ; Tomography - methods</subject><ispartof>Scientific reports, 2017-07, Vol.7 (1), p.4608-9, Article 4608</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-7f2ab1f475b9d54f33eac91c5d2cf839114baaa81430e109557d75d5bafabbc63</citedby><cites>FETCH-LOGICAL-c540t-7f2ab1f475b9d54f33eac91c5d2cf839114baaa81430e109557d75d5bafabbc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1956033393/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1956033393?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28676697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Li, Haoting</creatorcontrib><creatorcontrib>Fu, Feng</creatorcontrib><creatorcontrib>Shi, Xuetao</creatorcontrib><creatorcontrib>Dong, Xiuzhen</creatorcontrib><creatorcontrib>Dai, Meng</creatorcontrib><title>A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Phantom experiments are an important step for testing during the development of new hardware or imaging algorithms for head electrical impedance tomography (EIT) studies. However, due to the sophisticated anatomical geometry and complex resistivity distribution of the human head, constructing an accurate phantom for EIT research remains challenging, especially for skull modelling. In this paper, we designed and fabricated a novel head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution based on 3D printing techniques. The skull model was constructed by simultaneously printing the distinct layers inside the skull with resistivity-controllable printing materials. The entire phantom was composed of saline skin, a 3D-printed skull, saline cerebrospinal fluid (CSF) and 3D-printed brain parenchyma. The validation results demonstrated that the resistivity of the phantom was in good agreement with that of human tissue and was stable over time, and the new phantom performed well in EIT imaging. This paper provides a standardized, efficient and reproducible method for the construction of a head phantom for EIT that could be easily adapted to other conditions for manufacturing head phantoms for brain function research, such as transcranial direct current stimulation (TDCS) and electroencephalography (EEG).</description><subject>631/1647/245/2221</subject><subject>631/61/2049/974</subject><subject>692/700/1421/65</subject><subject>Cerebrospinal fluid</subject><subject>Computer Simulation</subject><subject>EEG</subject><subject>Electric Impedance</subject><subject>Electrical impedance</subject><subject>Electrical stimulation of the brain</subject><subject>ESB</subject><subject>Geometry</subject><subject>Head</subject><subject>Head - anatomy &amp; histology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Impedance</subject><subject>Medical imaging</subject><subject>Models, Anatomic</subject><subject>multidisciplinary</subject><subject>Neuroimaging</subject><subject>Parenchyma</subject><subject>Phantoms, Imaging</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skin</subject><subject>Skull</subject><subject>Skull - anatomy &amp; histology</subject><subject>Tomography</subject><subject>Tomography - methods</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kstuFDEQRVsIRKKQH2CBLLFh0-Bnd3uDFIVXpEhsYG1V-9HjwWMPdveg-Rs-FU8mRBMkvHGpfOuUq3Sb5iXBbwlmw7vCiZBDi0nfYoFx1w5PmnOKuWgpo_TpSXzWXJayxvUIKjmRz5szOnR918n-vPl9hWLa2YDYh3abfZytQSsLBm1XEOe0Qb_8vEIQocZeQwh7lC0EX2av0WTTxs55X98N0inOPi5pKVWzg7z3cULlxxJCrSiHgp2f98jUKPtxmX2KyKWMbLC6Ziob-c3WGojaototTRm2q_2L5pmDUOzl_X3RfP_08dv1l_b26-eb66vbVguO57Z3FEbieC9GaQR3jFnQkmhhqHYDk4TwEQAGwhm2BEshetMLI0ZwMI66YxfNzZFrEqxVXcWmjqASeHWXSHlSkOvQwSpXlwigOzdSzV1trGknmRGul5RzIJX1_sjaLuPGGm3jnCE8gj5-iX6lprRTgstukAfAm3tATj8XW2a18UXbECDaumBFJOnYQIUYqvT1P9J1WnKsq6oq0WHGmGRVRY8qnVMp2bqHzxCsDn5SRz-p6id15yd1QL86HeOh5K97qoAdBeVgncnmk97_x_4BLqvcAg</recordid><startdate>20170704</startdate><enddate>20170704</enddate><creator>Zhang, Jie</creator><creator>Yang, Bin</creator><creator>Li, Haoting</creator><creator>Fu, Feng</creator><creator>Shi, Xuetao</creator><creator>Dong, Xiuzhen</creator><creator>Dai, Meng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170704</creationdate><title>A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography</title><author>Zhang, Jie ; Yang, Bin ; Li, Haoting ; Fu, Feng ; Shi, Xuetao ; Dong, Xiuzhen ; Dai, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-7f2ab1f475b9d54f33eac91c5d2cf839114baaa81430e109557d75d5bafabbc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/1647/245/2221</topic><topic>631/61/2049/974</topic><topic>692/700/1421/65</topic><topic>Cerebrospinal fluid</topic><topic>Computer Simulation</topic><topic>EEG</topic><topic>Electric Impedance</topic><topic>Electrical impedance</topic><topic>Electrical stimulation of the brain</topic><topic>ESB</topic><topic>Geometry</topic><topic>Head</topic><topic>Head - anatomy &amp; histology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Impedance</topic><topic>Medical imaging</topic><topic>Models, Anatomic</topic><topic>multidisciplinary</topic><topic>Neuroimaging</topic><topic>Parenchyma</topic><topic>Phantoms, Imaging</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skin</topic><topic>Skull</topic><topic>Skull - anatomy &amp; histology</topic><topic>Tomography</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Li, Haoting</creatorcontrib><creatorcontrib>Fu, Feng</creatorcontrib><creatorcontrib>Shi, Xuetao</creatorcontrib><creatorcontrib>Dong, Xiuzhen</creatorcontrib><creatorcontrib>Dai, Meng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jie</au><au>Yang, Bin</au><au>Li, Haoting</au><au>Fu, Feng</au><au>Shi, Xuetao</au><au>Dong, Xiuzhen</au><au>Dai, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-07-04</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>4608</spage><epage>9</epage><pages>4608-9</pages><artnum>4608</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Phantom experiments are an important step for testing during the development of new hardware or imaging algorithms for head electrical impedance tomography (EIT) studies. However, due to the sophisticated anatomical geometry and complex resistivity distribution of the human head, constructing an accurate phantom for EIT research remains challenging, especially for skull modelling. In this paper, we designed and fabricated a novel head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution based on 3D printing techniques. The skull model was constructed by simultaneously printing the distinct layers inside the skull with resistivity-controllable printing materials. The entire phantom was composed of saline skin, a 3D-printed skull, saline cerebrospinal fluid (CSF) and 3D-printed brain parenchyma. The validation results demonstrated that the resistivity of the phantom was in good agreement with that of human tissue and was stable over time, and the new phantom performed well in EIT imaging. This paper provides a standardized, efficient and reproducible method for the construction of a head phantom for EIT that could be easily adapted to other conditions for manufacturing head phantoms for brain function research, such as transcranial direct current stimulation (TDCS) and electroencephalography (EEG).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28676697</pmid><doi>10.1038/s41598-017-05006-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-07, Vol.7 (1), p.4608-9, Article 4608
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f419aac6fb2c4ff2ac2693d5f79244a1
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/1647/245/2221
631/61/2049/974
692/700/1421/65
Cerebrospinal fluid
Computer Simulation
EEG
Electric Impedance
Electrical impedance
Electrical stimulation of the brain
ESB
Geometry
Head
Head - anatomy & histology
Humanities and Social Sciences
Humans
Impedance
Medical imaging
Models, Anatomic
multidisciplinary
Neuroimaging
Parenchyma
Phantoms, Imaging
Printing
Printing, Three-Dimensional
Science
Science (multidisciplinary)
Skin
Skull
Skull - anatomy & histology
Tomography
Tomography - methods
title A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%203D-printed%20head%20phantom%20with%20anatomically%20realistic%20geometry%20and%20continuously%20varying%20skull%20resistivity%20distribution%20for%20electrical%20impedance%20tomography&rft.jtitle=Scientific%20reports&rft.au=Zhang,%20Jie&rft.date=2017-07-04&rft.volume=7&rft.issue=1&rft.spage=4608&rft.epage=9&rft.pages=4608-9&rft.artnum=4608&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-05006-8&rft_dat=%3Cproquest_doaj_%3E1916382558%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-7f2ab1f475b9d54f33eac91c5d2cf839114baaa81430e109557d75d5bafabbc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956033393&rft_id=info:pmid/28676697&rfr_iscdi=true