Loading…
Computational characterization and identification of human polycystic ovary syndrome genes
Human polycystic ovary syndrome (PCOS) is a highly heritable disease regulated by genetic and environmental factors. Identifying PCOS genes is time consuming and costly in wet-lab. Developing an algorithm to predict PCOS candidates will be helpful. In this study, for the first time, we systematicall...
Saved in:
Published in: | Scientific reports 2018-08, Vol.8 (1), p.12949-7, Article 12949 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human polycystic ovary syndrome (PCOS) is a highly heritable disease regulated by genetic and environmental factors. Identifying PCOS genes is time consuming and costly in wet-lab. Developing an algorithm to predict PCOS candidates will be helpful. In this study, for the first time, we systematically analyzed properties of human PCOS genes. Compared with genes not yet known to be involved in PCOS regulation, known PCOS genes display distinguishing characteristics: (i) they tend to be located at network center; (ii) they tend to interact with each other; (iii) they tend to enrich in certain biological processes. Based on these features, we developed a machine-learning algorithm to predict new PCOS genes. 233 PCOS candidates were predicted with a posterior probability >0.9. Evidence supporting 7 of the top 10 predictions has been found. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-31110-4 |