Loading…
GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors
Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding prot...
Saved in:
Published in: | Communications biology 2021-12, Vol.4 (1), p.1356-1356, Article 1356 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343 |
container_end_page | 1356 |
container_issue | 1 |
container_start_page | 1356 |
container_title | Communications biology |
container_volume | 4 |
creator | Helness, Anne Fraszczak, Jennifer Joly-Beauparlant, Charles Bagci, Halil Trahan, Christian Arman, Kaifee Shooshtarizadeh, Peiman Chen, Riyan Ayoub, Marina Côté, Jean-François Oeffinger, Marlene Droit, Arnaud Möröy, Tarik |
description | Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes.
Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs. |
doi_str_mv | 10.1038/s42003-021-02889-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4208fa66ce144baa1f83bed6e3a7a19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4208fa66ce144baa1f83bed6e3a7a19</doaj_id><sourcerecordid>2605423833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343</originalsourceid><addsrcrecordid>eNp9kk1vEzEQhlcIRKvSP8ABWeLCZYu_4tgXJFRoG6kCCfVuTbzjxNHuerGdivx7nKSUlgOSv2S_89gzfpvmLaMXjAr9MUtOqWgpZ7VrbVr-ojnlwphWKMlfPlmfNOc5byilzBijhHzdnAipZ3Nt6Gnjrq8WjBQsa0yZ1JF82_74Qlwcph5_kRJJnHAkMHakJBizS2EqIY7Q9zsCroR7JG6d4gAljKS2YYd9DB2ZUlzhGEpM-U3zykOf8fxhPmvurr7eXd60t9-vF5efb1s3k7S0sKTcMDQd1RK077hSXnknloCOSUrBcO-1l_OZFEzpTipltNAgcE5rWuKsWRyxXYSNnVIYIO1shGAPGzGtLKQSXI_W1-JpD0o5ZFIuAZjXYomdQgFzYKayPh1Z03Y5YOdwrNn3z6DPT8awtqt4b7WqZTeiAj48AFL8ucVc7BCyw76HEeM2W66oMpwbvpe-_0e6idtUK3xQzSQXWuxV_KhyKeac0D8-hlG7d4Q9OsJWR9iDIyyvQe-epvEY8uf_q0AcBbkejStMf-_-D_Y3kl3B-w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605423833</pqid></control><display><type>article</type><title>GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Helness, Anne ; Fraszczak, Jennifer ; Joly-Beauparlant, Charles ; Bagci, Halil ; Trahan, Christian ; Arman, Kaifee ; Shooshtarizadeh, Peiman ; Chen, Riyan ; Ayoub, Marina ; Côté, Jean-François ; Oeffinger, Marlene ; Droit, Arnaud ; Möröy, Tarik</creator><creatorcontrib>Helness, Anne ; Fraszczak, Jennifer ; Joly-Beauparlant, Charles ; Bagci, Halil ; Trahan, Christian ; Arman, Kaifee ; Shooshtarizadeh, Peiman ; Chen, Riyan ; Ayoub, Marina ; Côté, Jean-François ; Oeffinger, Marlene ; Droit, Arnaud ; Möröy, Tarik</creatorcontrib><description>Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes.
Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-02889-2</identifier><identifier>PMID: 34857890</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/23 ; 38/39 ; 45/15 ; 45/91 ; 631/337 ; 631/337/100 ; 82/58 ; Animals ; Binding sites ; Biology ; Biomedical and Life Sciences ; Chromatin - metabolism ; Chromatin remodeling ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enhancers ; Gene regulation ; Histone deacetylase ; Histones ; Immune response ; Interferon regulatory factor 1 ; Leukocytes (neutrophilic) ; Life Sciences ; Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics ; Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism ; Mice ; Molecular modelling ; Monocytes ; Myeloid Progenitor Cells - metabolism ; Neutrophils ; NuRD protein ; Progenitor cells ; Promoters ; Transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Communications biology, 2021-12, Vol.4 (1), p.1356-1356, Article 1356</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343</citedby><cites>FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343</cites><orcidid>0000-0003-4284-9849 ; 0000-0001-7922-790X ; 0000-0002-4667-4655 ; 0000-0001-7055-2642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639993/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2605423833?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34857890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helness, Anne</creatorcontrib><creatorcontrib>Fraszczak, Jennifer</creatorcontrib><creatorcontrib>Joly-Beauparlant, Charles</creatorcontrib><creatorcontrib>Bagci, Halil</creatorcontrib><creatorcontrib>Trahan, Christian</creatorcontrib><creatorcontrib>Arman, Kaifee</creatorcontrib><creatorcontrib>Shooshtarizadeh, Peiman</creatorcontrib><creatorcontrib>Chen, Riyan</creatorcontrib><creatorcontrib>Ayoub, Marina</creatorcontrib><creatorcontrib>Côté, Jean-François</creatorcontrib><creatorcontrib>Oeffinger, Marlene</creatorcontrib><creatorcontrib>Droit, Arnaud</creatorcontrib><creatorcontrib>Möröy, Tarik</creatorcontrib><title>GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes.
Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.</description><subject>38/23</subject><subject>38/39</subject><subject>45/15</subject><subject>45/91</subject><subject>631/337</subject><subject>631/337/100</subject><subject>82/58</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatin - metabolism</subject><subject>Chromatin remodeling</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enhancers</subject><subject>Gene regulation</subject><subject>Histone deacetylase</subject><subject>Histones</subject><subject>Immune response</subject><subject>Interferon regulatory factor 1</subject><subject>Leukocytes (neutrophilic)</subject><subject>Life Sciences</subject><subject>Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics</subject><subject>Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Monocytes</subject><subject>Myeloid Progenitor Cells - metabolism</subject><subject>Neutrophils</subject><subject>NuRD protein</subject><subject>Progenitor cells</subject><subject>Promoters</subject><subject>Transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vEzEQhlcIRKvSP8ABWeLCZYu_4tgXJFRoG6kCCfVuTbzjxNHuerGdivx7nKSUlgOSv2S_89gzfpvmLaMXjAr9MUtOqWgpZ7VrbVr-ojnlwphWKMlfPlmfNOc5byilzBijhHzdnAipZ3Nt6Gnjrq8WjBQsa0yZ1JF82_74Qlwcph5_kRJJnHAkMHakJBizS2EqIY7Q9zsCroR7JG6d4gAljKS2YYd9DB2ZUlzhGEpM-U3zykOf8fxhPmvurr7eXd60t9-vF5efb1s3k7S0sKTcMDQd1RK077hSXnknloCOSUrBcO-1l_OZFEzpTipltNAgcE5rWuKsWRyxXYSNnVIYIO1shGAPGzGtLKQSXI_W1-JpD0o5ZFIuAZjXYomdQgFzYKayPh1Z03Y5YOdwrNn3z6DPT8awtqt4b7WqZTeiAj48AFL8ucVc7BCyw76HEeM2W66oMpwbvpe-_0e6idtUK3xQzSQXWuxV_KhyKeac0D8-hlG7d4Q9OsJWR9iDIyyvQe-epvEY8uf_q0AcBbkejStMf-_-D_Y3kl3B-w</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Helness, Anne</creator><creator>Fraszczak, Jennifer</creator><creator>Joly-Beauparlant, Charles</creator><creator>Bagci, Halil</creator><creator>Trahan, Christian</creator><creator>Arman, Kaifee</creator><creator>Shooshtarizadeh, Peiman</creator><creator>Chen, Riyan</creator><creator>Ayoub, Marina</creator><creator>Côté, Jean-François</creator><creator>Oeffinger, Marlene</creator><creator>Droit, Arnaud</creator><creator>Möröy, Tarik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4284-9849</orcidid><orcidid>https://orcid.org/0000-0001-7922-790X</orcidid><orcidid>https://orcid.org/0000-0002-4667-4655</orcidid><orcidid>https://orcid.org/0000-0001-7055-2642</orcidid></search><sort><creationdate>20211202</creationdate><title>GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors</title><author>Helness, Anne ; Fraszczak, Jennifer ; Joly-Beauparlant, Charles ; Bagci, Halil ; Trahan, Christian ; Arman, Kaifee ; Shooshtarizadeh, Peiman ; Chen, Riyan ; Ayoub, Marina ; Côté, Jean-François ; Oeffinger, Marlene ; Droit, Arnaud ; Möröy, Tarik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>38/23</topic><topic>38/39</topic><topic>45/15</topic><topic>45/91</topic><topic>631/337</topic><topic>631/337/100</topic><topic>82/58</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatin - metabolism</topic><topic>Chromatin remodeling</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enhancers</topic><topic>Gene regulation</topic><topic>Histone deacetylase</topic><topic>Histones</topic><topic>Immune response</topic><topic>Interferon regulatory factor 1</topic><topic>Leukocytes (neutrophilic)</topic><topic>Life Sciences</topic><topic>Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics</topic><topic>Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Monocytes</topic><topic>Myeloid Progenitor Cells - metabolism</topic><topic>Neutrophils</topic><topic>NuRD protein</topic><topic>Progenitor cells</topic><topic>Promoters</topic><topic>Transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helness, Anne</creatorcontrib><creatorcontrib>Fraszczak, Jennifer</creatorcontrib><creatorcontrib>Joly-Beauparlant, Charles</creatorcontrib><creatorcontrib>Bagci, Halil</creatorcontrib><creatorcontrib>Trahan, Christian</creatorcontrib><creatorcontrib>Arman, Kaifee</creatorcontrib><creatorcontrib>Shooshtarizadeh, Peiman</creatorcontrib><creatorcontrib>Chen, Riyan</creatorcontrib><creatorcontrib>Ayoub, Marina</creatorcontrib><creatorcontrib>Côté, Jean-François</creatorcontrib><creatorcontrib>Oeffinger, Marlene</creatorcontrib><creatorcontrib>Droit, Arnaud</creatorcontrib><creatorcontrib>Möröy, Tarik</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helness, Anne</au><au>Fraszczak, Jennifer</au><au>Joly-Beauparlant, Charles</au><au>Bagci, Halil</au><au>Trahan, Christian</au><au>Arman, Kaifee</au><au>Shooshtarizadeh, Peiman</au><au>Chen, Riyan</au><au>Ayoub, Marina</au><au>Côté, Jean-François</au><au>Oeffinger, Marlene</au><au>Droit, Arnaud</au><au>Möröy, Tarik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>1356</spage><epage>1356</epage><pages>1356-1356</pages><artnum>1356</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes.
Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34857890</pmid><doi>10.1038/s42003-021-02889-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4284-9849</orcidid><orcidid>https://orcid.org/0000-0001-7922-790X</orcidid><orcidid>https://orcid.org/0000-0002-4667-4655</orcidid><orcidid>https://orcid.org/0000-0001-7055-2642</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2021-12, Vol.4 (1), p.1356-1356, Article 1356 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f4208fa66ce144baa1f83bed6e3a7a19 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 38/23 38/39 45/15 45/91 631/337 631/337/100 82/58 Animals Binding sites Biology Biomedical and Life Sciences Chromatin - metabolism Chromatin remodeling Deoxyribonucleic acid DNA DNA helicase DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Enhancers Gene regulation Histone deacetylase Histones Immune response Interferon regulatory factor 1 Leukocytes (neutrophilic) Life Sciences Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism Mice Molecular modelling Monocytes Myeloid Progenitor Cells - metabolism Neutrophils NuRD protein Progenitor cells Promoters Transcription Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
title | GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GFI1%20tethers%20the%20NuRD%20complex%20to%20open%20and%20transcriptionally%20active%20chromatin%20in%20myeloid%20progenitors&rft.jtitle=Communications%20biology&rft.au=Helness,%20Anne&rft.date=2021-12-02&rft.volume=4&rft.issue=1&rft.spage=1356&rft.epage=1356&rft.pages=1356-1356&rft.artnum=1356&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-02889-2&rft_dat=%3Cproquest_doaj_%3E2605423833%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605423833&rft_id=info:pmid/34857890&rfr_iscdi=true |