Loading…

GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors

Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding prot...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2021-12, Vol.4 (1), p.1356-1356, Article 1356
Main Authors: Helness, Anne, Fraszczak, Jennifer, Joly-Beauparlant, Charles, Bagci, Halil, Trahan, Christian, Arman, Kaifee, Shooshtarizadeh, Peiman, Chen, Riyan, Ayoub, Marina, Côté, Jean-François, Oeffinger, Marlene, Droit, Arnaud, Möröy, Tarik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343
cites cdi_FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343
container_end_page 1356
container_issue 1
container_start_page 1356
container_title Communications biology
container_volume 4
creator Helness, Anne
Fraszczak, Jennifer
Joly-Beauparlant, Charles
Bagci, Halil
Trahan, Christian
Arman, Kaifee
Shooshtarizadeh, Peiman
Chen, Riyan
Ayoub, Marina
Côté, Jean-François
Oeffinger, Marlene
Droit, Arnaud
Möröy, Tarik
description Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes. Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.
doi_str_mv 10.1038/s42003-021-02889-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4208fa66ce144baa1f83bed6e3a7a19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4208fa66ce144baa1f83bed6e3a7a19</doaj_id><sourcerecordid>2605423833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343</originalsourceid><addsrcrecordid>eNp9kk1vEzEQhlcIRKvSP8ABWeLCZYu_4tgXJFRoG6kCCfVuTbzjxNHuerGdivx7nKSUlgOSv2S_89gzfpvmLaMXjAr9MUtOqWgpZ7VrbVr-ojnlwphWKMlfPlmfNOc5byilzBijhHzdnAipZ3Nt6Gnjrq8WjBQsa0yZ1JF82_74Qlwcph5_kRJJnHAkMHakJBizS2EqIY7Q9zsCroR7JG6d4gAljKS2YYd9DB2ZUlzhGEpM-U3zykOf8fxhPmvurr7eXd60t9-vF5efb1s3k7S0sKTcMDQd1RK077hSXnknloCOSUrBcO-1l_OZFEzpTipltNAgcE5rWuKsWRyxXYSNnVIYIO1shGAPGzGtLKQSXI_W1-JpD0o5ZFIuAZjXYomdQgFzYKayPh1Z03Y5YOdwrNn3z6DPT8awtqt4b7WqZTeiAj48AFL8ucVc7BCyw76HEeM2W66oMpwbvpe-_0e6idtUK3xQzSQXWuxV_KhyKeac0D8-hlG7d4Q9OsJWR9iDIyyvQe-epvEY8uf_q0AcBbkejStMf-_-D_Y3kl3B-w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605423833</pqid></control><display><type>article</type><title>GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Helness, Anne ; Fraszczak, Jennifer ; Joly-Beauparlant, Charles ; Bagci, Halil ; Trahan, Christian ; Arman, Kaifee ; Shooshtarizadeh, Peiman ; Chen, Riyan ; Ayoub, Marina ; Côté, Jean-François ; Oeffinger, Marlene ; Droit, Arnaud ; Möröy, Tarik</creator><creatorcontrib>Helness, Anne ; Fraszczak, Jennifer ; Joly-Beauparlant, Charles ; Bagci, Halil ; Trahan, Christian ; Arman, Kaifee ; Shooshtarizadeh, Peiman ; Chen, Riyan ; Ayoub, Marina ; Côté, Jean-François ; Oeffinger, Marlene ; Droit, Arnaud ; Möröy, Tarik</creatorcontrib><description>Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes. Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-02889-2</identifier><identifier>PMID: 34857890</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/23 ; 38/39 ; 45/15 ; 45/91 ; 631/337 ; 631/337/100 ; 82/58 ; Animals ; Binding sites ; Biology ; Biomedical and Life Sciences ; Chromatin - metabolism ; Chromatin remodeling ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enhancers ; Gene regulation ; Histone deacetylase ; Histones ; Immune response ; Interferon regulatory factor 1 ; Leukocytes (neutrophilic) ; Life Sciences ; Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics ; Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism ; Mice ; Molecular modelling ; Monocytes ; Myeloid Progenitor Cells - metabolism ; Neutrophils ; NuRD protein ; Progenitor cells ; Promoters ; Transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Communications biology, 2021-12, Vol.4 (1), p.1356-1356, Article 1356</ispartof><rights>The Author(s) 2021. corrected publication 2022</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343</citedby><cites>FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343</cites><orcidid>0000-0003-4284-9849 ; 0000-0001-7922-790X ; 0000-0002-4667-4655 ; 0000-0001-7055-2642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639993/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2605423833?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34857890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helness, Anne</creatorcontrib><creatorcontrib>Fraszczak, Jennifer</creatorcontrib><creatorcontrib>Joly-Beauparlant, Charles</creatorcontrib><creatorcontrib>Bagci, Halil</creatorcontrib><creatorcontrib>Trahan, Christian</creatorcontrib><creatorcontrib>Arman, Kaifee</creatorcontrib><creatorcontrib>Shooshtarizadeh, Peiman</creatorcontrib><creatorcontrib>Chen, Riyan</creatorcontrib><creatorcontrib>Ayoub, Marina</creatorcontrib><creatorcontrib>Côté, Jean-François</creatorcontrib><creatorcontrib>Oeffinger, Marlene</creatorcontrib><creatorcontrib>Droit, Arnaud</creatorcontrib><creatorcontrib>Möröy, Tarik</creatorcontrib><title>GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes. Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.</description><subject>38/23</subject><subject>38/39</subject><subject>45/15</subject><subject>45/91</subject><subject>631/337</subject><subject>631/337/100</subject><subject>82/58</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatin - metabolism</subject><subject>Chromatin remodeling</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enhancers</subject><subject>Gene regulation</subject><subject>Histone deacetylase</subject><subject>Histones</subject><subject>Immune response</subject><subject>Interferon regulatory factor 1</subject><subject>Leukocytes (neutrophilic)</subject><subject>Life Sciences</subject><subject>Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics</subject><subject>Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Monocytes</subject><subject>Myeloid Progenitor Cells - metabolism</subject><subject>Neutrophils</subject><subject>NuRD protein</subject><subject>Progenitor cells</subject><subject>Promoters</subject><subject>Transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vEzEQhlcIRKvSP8ABWeLCZYu_4tgXJFRoG6kCCfVuTbzjxNHuerGdivx7nKSUlgOSv2S_89gzfpvmLaMXjAr9MUtOqWgpZ7VrbVr-ojnlwphWKMlfPlmfNOc5byilzBijhHzdnAipZ3Nt6Gnjrq8WjBQsa0yZ1JF82_74Qlwcph5_kRJJnHAkMHakJBizS2EqIY7Q9zsCroR7JG6d4gAljKS2YYd9DB2ZUlzhGEpM-U3zykOf8fxhPmvurr7eXd60t9-vF5efb1s3k7S0sKTcMDQd1RK077hSXnknloCOSUrBcO-1l_OZFEzpTipltNAgcE5rWuKsWRyxXYSNnVIYIO1shGAPGzGtLKQSXI_W1-JpD0o5ZFIuAZjXYomdQgFzYKayPh1Z03Y5YOdwrNn3z6DPT8awtqt4b7WqZTeiAj48AFL8ucVc7BCyw76HEeM2W66oMpwbvpe-_0e6idtUK3xQzSQXWuxV_KhyKeac0D8-hlG7d4Q9OsJWR9iDIyyvQe-epvEY8uf_q0AcBbkejStMf-_-D_Y3kl3B-w</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Helness, Anne</creator><creator>Fraszczak, Jennifer</creator><creator>Joly-Beauparlant, Charles</creator><creator>Bagci, Halil</creator><creator>Trahan, Christian</creator><creator>Arman, Kaifee</creator><creator>Shooshtarizadeh, Peiman</creator><creator>Chen, Riyan</creator><creator>Ayoub, Marina</creator><creator>Côté, Jean-François</creator><creator>Oeffinger, Marlene</creator><creator>Droit, Arnaud</creator><creator>Möröy, Tarik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4284-9849</orcidid><orcidid>https://orcid.org/0000-0001-7922-790X</orcidid><orcidid>https://orcid.org/0000-0002-4667-4655</orcidid><orcidid>https://orcid.org/0000-0001-7055-2642</orcidid></search><sort><creationdate>20211202</creationdate><title>GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors</title><author>Helness, Anne ; Fraszczak, Jennifer ; Joly-Beauparlant, Charles ; Bagci, Halil ; Trahan, Christian ; Arman, Kaifee ; Shooshtarizadeh, Peiman ; Chen, Riyan ; Ayoub, Marina ; Côté, Jean-François ; Oeffinger, Marlene ; Droit, Arnaud ; Möröy, Tarik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>38/23</topic><topic>38/39</topic><topic>45/15</topic><topic>45/91</topic><topic>631/337</topic><topic>631/337/100</topic><topic>82/58</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatin - metabolism</topic><topic>Chromatin remodeling</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enhancers</topic><topic>Gene regulation</topic><topic>Histone deacetylase</topic><topic>Histones</topic><topic>Immune response</topic><topic>Interferon regulatory factor 1</topic><topic>Leukocytes (neutrophilic)</topic><topic>Life Sciences</topic><topic>Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics</topic><topic>Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Monocytes</topic><topic>Myeloid Progenitor Cells - metabolism</topic><topic>Neutrophils</topic><topic>NuRD protein</topic><topic>Progenitor cells</topic><topic>Promoters</topic><topic>Transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helness, Anne</creatorcontrib><creatorcontrib>Fraszczak, Jennifer</creatorcontrib><creatorcontrib>Joly-Beauparlant, Charles</creatorcontrib><creatorcontrib>Bagci, Halil</creatorcontrib><creatorcontrib>Trahan, Christian</creatorcontrib><creatorcontrib>Arman, Kaifee</creatorcontrib><creatorcontrib>Shooshtarizadeh, Peiman</creatorcontrib><creatorcontrib>Chen, Riyan</creatorcontrib><creatorcontrib>Ayoub, Marina</creatorcontrib><creatorcontrib>Côté, Jean-François</creatorcontrib><creatorcontrib>Oeffinger, Marlene</creatorcontrib><creatorcontrib>Droit, Arnaud</creatorcontrib><creatorcontrib>Möröy, Tarik</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helness, Anne</au><au>Fraszczak, Jennifer</au><au>Joly-Beauparlant, Charles</au><au>Bagci, Halil</au><au>Trahan, Christian</au><au>Arman, Kaifee</au><au>Shooshtarizadeh, Peiman</au><au>Chen, Riyan</au><au>Ayoub, Marina</au><au>Côté, Jean-François</au><au>Oeffinger, Marlene</au><au>Droit, Arnaud</au><au>Möröy, Tarik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>1356</spage><epage>1356</epage><pages>1356-1356</pages><artnum>1356</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes. Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34857890</pmid><doi>10.1038/s42003-021-02889-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4284-9849</orcidid><orcidid>https://orcid.org/0000-0001-7922-790X</orcidid><orcidid>https://orcid.org/0000-0002-4667-4655</orcidid><orcidid>https://orcid.org/0000-0001-7055-2642</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2021-12, Vol.4 (1), p.1356-1356, Article 1356
issn 2399-3642
2399-3642
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f4208fa66ce144baa1f83bed6e3a7a19
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 38/23
38/39
45/15
45/91
631/337
631/337/100
82/58
Animals
Binding sites
Biology
Biomedical and Life Sciences
Chromatin - metabolism
Chromatin remodeling
Deoxyribonucleic acid
DNA
DNA helicase
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enhancers
Gene regulation
Histone deacetylase
Histones
Immune response
Interferon regulatory factor 1
Leukocytes (neutrophilic)
Life Sciences
Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics
Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism
Mice
Molecular modelling
Monocytes
Myeloid Progenitor Cells - metabolism
Neutrophils
NuRD protein
Progenitor cells
Promoters
Transcription
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GFI1%20tethers%20the%20NuRD%20complex%20to%20open%20and%20transcriptionally%20active%20chromatin%20in%20myeloid%20progenitors&rft.jtitle=Communications%20biology&rft.au=Helness,%20Anne&rft.date=2021-12-02&rft.volume=4&rft.issue=1&rft.spage=1356&rft.epage=1356&rft.pages=1356-1356&rft.artnum=1356&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-02889-2&rft_dat=%3Cproquest_doaj_%3E2605423833%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ab0291e9d084a8fd266f6fc3baec1400a92ff8f47543168d4669838a3e706343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605423833&rft_id=info:pmid/34857890&rfr_iscdi=true