Loading…
Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System
The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.24 (1), p.138 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3 |
container_end_page | |
container_issue | 1 |
container_start_page | 138 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Park, Sangyoon Ju, Sungha Nguyen, Minh Hieu Yoon, Sanghyun Heo, Joon |
description | The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate local coordinate systems into a unified coordinate system, still relies on manual intervention. To address this practical issue, this study presents an automated point cloud registration approach optimized for a stop-and-go scanning system based on a quadruped walking robot. The proposed approach comprises three main phases: perpendicular constrained wall-plane extraction; coarse registration with plane matching using point-to-point displacement calculation; and fine registration with horizontality constrained iterative closest point (ICP). Experimental results indicate that the proposed method successfully achieved automated registration with an accuracy of 0.044 m and a successful scan rate (SSR) of 100% within a time frame of 424.2 s with 18 sets of scan data acquired from the stop-and-go scanning system in a real-world indoor environment. Furthermore, it surpasses conventional approaches, ensuring reliable registration for point cloud pairs with low overlap in specific indoor environmental conditions. |
doi_str_mv | 10.3390/s24010138 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f42be1863c42495bacb17217768e64aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779351247</galeid><doaj_id>oai_doaj_org_article_f42be1863c42495bacb17217768e64aa</doaj_id><sourcerecordid>A779351247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3</originalsourceid><addsrcrecordid>eNpdkltrFDEYhgex2INe-AdkwJt6MTWnmSRXsixaC4WKq3gZcppplplkTDJC_fVmu3VpSy4S3jx5v0O-qnoLwQXGHHxMiAAIIGYvqhNIEGkYQuDlo_NxdZrSFgCEMWavqmPMEMAAgJPq12rJYZLZmvpbcD7X6zEspv5uB5dylNkFX6_mOQapb-ubObvJ_S1sH2It600OcyO9aS5DvdHSe-eHenOXsp1eV0e9HJN987CfVT-_fP6x_tpc31xerVfXjSYdz40xnPIWWo2hUkYhBSkESDLUGtVioignxgLUA6o0BkWwhnaSdLoDjEFg8Vl1tfc1QW7FHN0k450I0ol7IcRByJidHq3oCVIWsg7r0hbeKqlLNAQp7ZjtiJTF69Pea17UZI22vnRgfGL69Ma7WzGEPwICyiDqaHE4f3CI4fdiUxaTS9qOo_Q2LEkgDjEhDPKuoO-foduwRF96taMQK5-FeKEu9tQgSwXO96EE1mUZOzkdvO1d0VeUctxCRHYZfNg_0DGkFG1_SB8CsRsWcRiWwr57XO-B_D8d-B88FLfg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912800229</pqid></control><display><type>article</type><title>Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Park, Sangyoon ; Ju, Sungha ; Nguyen, Minh Hieu ; Yoon, Sanghyun ; Heo, Joon</creator><creatorcontrib>Park, Sangyoon ; Ju, Sungha ; Nguyen, Minh Hieu ; Yoon, Sanghyun ; Heo, Joon</creatorcontrib><description>The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate local coordinate systems into a unified coordinate system, still relies on manual intervention. To address this practical issue, this study presents an automated point cloud registration approach optimized for a stop-and-go scanning system based on a quadruped walking robot. The proposed approach comprises three main phases: perpendicular constrained wall-plane extraction; coarse registration with plane matching using point-to-point displacement calculation; and fine registration with horizontality constrained iterative closest point (ICP). Experimental results indicate that the proposed method successfully achieved automated registration with an accuracy of 0.044 m and a successful scan rate (SSR) of 100% within a time frame of 424.2 s with 18 sets of scan data acquired from the stop-and-go scanning system in a real-world indoor environment. Furthermore, it surpasses conventional approaches, ensuring reliable registration for point cloud pairs with low overlap in specific indoor environmental conditions.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24010138</identifier><identifier>PMID: 38203000</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Automation ; Construction ; Lasers ; Methods ; point cloud registration ; Registration ; Robotics ; Robotics industry ; Robots ; Scanners ; stop-and-go scanning systems ; terrestrial laser scanning</subject><ispartof>Sensors (Basel, Switzerland), 2023-12, Vol.24 (1), p.138</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3</cites><orcidid>0000-0001-8779-6694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912800229/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912800229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38203000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Sangyoon</creatorcontrib><creatorcontrib>Ju, Sungha</creatorcontrib><creatorcontrib>Nguyen, Minh Hieu</creatorcontrib><creatorcontrib>Yoon, Sanghyun</creatorcontrib><creatorcontrib>Heo, Joon</creatorcontrib><title>Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate local coordinate systems into a unified coordinate system, still relies on manual intervention. To address this practical issue, this study presents an automated point cloud registration approach optimized for a stop-and-go scanning system based on a quadruped walking robot. The proposed approach comprises three main phases: perpendicular constrained wall-plane extraction; coarse registration with plane matching using point-to-point displacement calculation; and fine registration with horizontality constrained iterative closest point (ICP). Experimental results indicate that the proposed method successfully achieved automated registration with an accuracy of 0.044 m and a successful scan rate (SSR) of 100% within a time frame of 424.2 s with 18 sets of scan data acquired from the stop-and-go scanning system in a real-world indoor environment. Furthermore, it surpasses conventional approaches, ensuring reliable registration for point cloud pairs with low overlap in specific indoor environmental conditions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Construction</subject><subject>Lasers</subject><subject>Methods</subject><subject>point cloud registration</subject><subject>Registration</subject><subject>Robotics</subject><subject>Robotics industry</subject><subject>Robots</subject><subject>Scanners</subject><subject>stop-and-go scanning systems</subject><subject>terrestrial laser scanning</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkltrFDEYhgex2INe-AdkwJt6MTWnmSRXsixaC4WKq3gZcppplplkTDJC_fVmu3VpSy4S3jx5v0O-qnoLwQXGHHxMiAAIIGYvqhNIEGkYQuDlo_NxdZrSFgCEMWavqmPMEMAAgJPq12rJYZLZmvpbcD7X6zEspv5uB5dylNkFX6_mOQapb-ubObvJ_S1sH2It600OcyO9aS5DvdHSe-eHenOXsp1eV0e9HJN987CfVT-_fP6x_tpc31xerVfXjSYdz40xnPIWWo2hUkYhBSkESDLUGtVioignxgLUA6o0BkWwhnaSdLoDjEFg8Vl1tfc1QW7FHN0k450I0ol7IcRByJidHq3oCVIWsg7r0hbeKqlLNAQp7ZjtiJTF69Pea17UZI22vnRgfGL69Ma7WzGEPwICyiDqaHE4f3CI4fdiUxaTS9qOo_Q2LEkgDjEhDPKuoO-foduwRF96taMQK5-FeKEu9tQgSwXO96EE1mUZOzkdvO1d0VeUctxCRHYZfNg_0DGkFG1_SB8CsRsWcRiWwr57XO-B_D8d-B88FLfg</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Park, Sangyoon</creator><creator>Ju, Sungha</creator><creator>Nguyen, Minh Hieu</creator><creator>Yoon, Sanghyun</creator><creator>Heo, Joon</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8779-6694</orcidid></search><sort><creationdate>20231226</creationdate><title>Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System</title><author>Park, Sangyoon ; Ju, Sungha ; Nguyen, Minh Hieu ; Yoon, Sanghyun ; Heo, Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Construction</topic><topic>Lasers</topic><topic>Methods</topic><topic>point cloud registration</topic><topic>Registration</topic><topic>Robotics</topic><topic>Robotics industry</topic><topic>Robots</topic><topic>Scanners</topic><topic>stop-and-go scanning systems</topic><topic>terrestrial laser scanning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sangyoon</creatorcontrib><creatorcontrib>Ju, Sungha</creatorcontrib><creatorcontrib>Nguyen, Minh Hieu</creatorcontrib><creatorcontrib>Yoon, Sanghyun</creatorcontrib><creatorcontrib>Heo, Joon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sangyoon</au><au>Ju, Sungha</au><au>Nguyen, Minh Hieu</au><au>Yoon, Sanghyun</au><au>Heo, Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-12-26</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>138</spage><pages>138-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate local coordinate systems into a unified coordinate system, still relies on manual intervention. To address this practical issue, this study presents an automated point cloud registration approach optimized for a stop-and-go scanning system based on a quadruped walking robot. The proposed approach comprises three main phases: perpendicular constrained wall-plane extraction; coarse registration with plane matching using point-to-point displacement calculation; and fine registration with horizontality constrained iterative closest point (ICP). Experimental results indicate that the proposed method successfully achieved automated registration with an accuracy of 0.044 m and a successful scan rate (SSR) of 100% within a time frame of 424.2 s with 18 sets of scan data acquired from the stop-and-go scanning system in a real-world indoor environment. Furthermore, it surpasses conventional approaches, ensuring reliable registration for point cloud pairs with low overlap in specific indoor environmental conditions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38203000</pmid><doi>10.3390/s24010138</doi><orcidid>https://orcid.org/0000-0001-8779-6694</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-12, Vol.24 (1), p.138 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f42be1863c42495bacb17217768e64aa |
source | PubMed Central Free; Publicly Available Content (ProQuest) |
subjects | Accuracy Algorithms Automation Construction Lasers Methods point cloud registration Registration Robotics Robotics industry Robots Scanners stop-and-go scanning systems terrestrial laser scanning |
title | Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Point%20Cloud%20Registration%20Approach%20Optimized%20for%20a%20Stop-and-Go%20Scanning%20System&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Park,%20Sangyoon&rft.date=2023-12-26&rft.volume=24&rft.issue=1&rft.spage=138&rft.pages=138-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24010138&rft_dat=%3Cgale_doaj_%3EA779351247%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912800229&rft_id=info:pmid/38203000&rft_galeid=A779351247&rfr_iscdi=true |