Loading…

Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System

The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.24 (1), p.138
Main Authors: Park, Sangyoon, Ju, Sungha, Nguyen, Minh Hieu, Yoon, Sanghyun, Heo, Joon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3
container_end_page
container_issue 1
container_start_page 138
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Park, Sangyoon
Ju, Sungha
Nguyen, Minh Hieu
Yoon, Sanghyun
Heo, Joon
description The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate local coordinate systems into a unified coordinate system, still relies on manual intervention. To address this practical issue, this study presents an automated point cloud registration approach optimized for a stop-and-go scanning system based on a quadruped walking robot. The proposed approach comprises three main phases: perpendicular constrained wall-plane extraction; coarse registration with plane matching using point-to-point displacement calculation; and fine registration with horizontality constrained iterative closest point (ICP). Experimental results indicate that the proposed method successfully achieved automated registration with an accuracy of 0.044 m and a successful scan rate (SSR) of 100% within a time frame of 424.2 s with 18 sets of scan data acquired from the stop-and-go scanning system in a real-world indoor environment. Furthermore, it surpasses conventional approaches, ensuring reliable registration for point cloud pairs with low overlap in specific indoor environmental conditions.
doi_str_mv 10.3390/s24010138
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f42be1863c42495bacb17217768e64aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779351247</galeid><doaj_id>oai_doaj_org_article_f42be1863c42495bacb17217768e64aa</doaj_id><sourcerecordid>A779351247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3</originalsourceid><addsrcrecordid>eNpdkltrFDEYhgex2INe-AdkwJt6MTWnmSRXsixaC4WKq3gZcppplplkTDJC_fVmu3VpSy4S3jx5v0O-qnoLwQXGHHxMiAAIIGYvqhNIEGkYQuDlo_NxdZrSFgCEMWavqmPMEMAAgJPq12rJYZLZmvpbcD7X6zEspv5uB5dylNkFX6_mOQapb-ubObvJ_S1sH2It600OcyO9aS5DvdHSe-eHenOXsp1eV0e9HJN987CfVT-_fP6x_tpc31xerVfXjSYdz40xnPIWWo2hUkYhBSkESDLUGtVioignxgLUA6o0BkWwhnaSdLoDjEFg8Vl1tfc1QW7FHN0k450I0ol7IcRByJidHq3oCVIWsg7r0hbeKqlLNAQp7ZjtiJTF69Pea17UZI22vnRgfGL69Ma7WzGEPwICyiDqaHE4f3CI4fdiUxaTS9qOo_Q2LEkgDjEhDPKuoO-foduwRF96taMQK5-FeKEu9tQgSwXO96EE1mUZOzkdvO1d0VeUctxCRHYZfNg_0DGkFG1_SB8CsRsWcRiWwr57XO-B_D8d-B88FLfg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912800229</pqid></control><display><type>article</type><title>Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Park, Sangyoon ; Ju, Sungha ; Nguyen, Minh Hieu ; Yoon, Sanghyun ; Heo, Joon</creator><creatorcontrib>Park, Sangyoon ; Ju, Sungha ; Nguyen, Minh Hieu ; Yoon, Sanghyun ; Heo, Joon</creatorcontrib><description>The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate local coordinate systems into a unified coordinate system, still relies on manual intervention. To address this practical issue, this study presents an automated point cloud registration approach optimized for a stop-and-go scanning system based on a quadruped walking robot. The proposed approach comprises three main phases: perpendicular constrained wall-plane extraction; coarse registration with plane matching using point-to-point displacement calculation; and fine registration with horizontality constrained iterative closest point (ICP). Experimental results indicate that the proposed method successfully achieved automated registration with an accuracy of 0.044 m and a successful scan rate (SSR) of 100% within a time frame of 424.2 s with 18 sets of scan data acquired from the stop-and-go scanning system in a real-world indoor environment. Furthermore, it surpasses conventional approaches, ensuring reliable registration for point cloud pairs with low overlap in specific indoor environmental conditions.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24010138</identifier><identifier>PMID: 38203000</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Automation ; Construction ; Lasers ; Methods ; point cloud registration ; Registration ; Robotics ; Robotics industry ; Robots ; Scanners ; stop-and-go scanning systems ; terrestrial laser scanning</subject><ispartof>Sensors (Basel, Switzerland), 2023-12, Vol.24 (1), p.138</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3</cites><orcidid>0000-0001-8779-6694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912800229/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912800229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38203000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Sangyoon</creatorcontrib><creatorcontrib>Ju, Sungha</creatorcontrib><creatorcontrib>Nguyen, Minh Hieu</creatorcontrib><creatorcontrib>Yoon, Sanghyun</creatorcontrib><creatorcontrib>Heo, Joon</creatorcontrib><title>Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate local coordinate systems into a unified coordinate system, still relies on manual intervention. To address this practical issue, this study presents an automated point cloud registration approach optimized for a stop-and-go scanning system based on a quadruped walking robot. The proposed approach comprises three main phases: perpendicular constrained wall-plane extraction; coarse registration with plane matching using point-to-point displacement calculation; and fine registration with horizontality constrained iterative closest point (ICP). Experimental results indicate that the proposed method successfully achieved automated registration with an accuracy of 0.044 m and a successful scan rate (SSR) of 100% within a time frame of 424.2 s with 18 sets of scan data acquired from the stop-and-go scanning system in a real-world indoor environment. Furthermore, it surpasses conventional approaches, ensuring reliable registration for point cloud pairs with low overlap in specific indoor environmental conditions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Construction</subject><subject>Lasers</subject><subject>Methods</subject><subject>point cloud registration</subject><subject>Registration</subject><subject>Robotics</subject><subject>Robotics industry</subject><subject>Robots</subject><subject>Scanners</subject><subject>stop-and-go scanning systems</subject><subject>terrestrial laser scanning</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkltrFDEYhgex2INe-AdkwJt6MTWnmSRXsixaC4WKq3gZcppplplkTDJC_fVmu3VpSy4S3jx5v0O-qnoLwQXGHHxMiAAIIGYvqhNIEGkYQuDlo_NxdZrSFgCEMWavqmPMEMAAgJPq12rJYZLZmvpbcD7X6zEspv5uB5dylNkFX6_mOQapb-ubObvJ_S1sH2It600OcyO9aS5DvdHSe-eHenOXsp1eV0e9HJN987CfVT-_fP6x_tpc31xerVfXjSYdz40xnPIWWo2hUkYhBSkESDLUGtVioignxgLUA6o0BkWwhnaSdLoDjEFg8Vl1tfc1QW7FHN0k450I0ol7IcRByJidHq3oCVIWsg7r0hbeKqlLNAQp7ZjtiJTF69Pea17UZI22vnRgfGL69Ma7WzGEPwICyiDqaHE4f3CI4fdiUxaTS9qOo_Q2LEkgDjEhDPKuoO-foduwRF96taMQK5-FeKEu9tQgSwXO96EE1mUZOzkdvO1d0VeUctxCRHYZfNg_0DGkFG1_SB8CsRsWcRiWwr57XO-B_D8d-B88FLfg</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Park, Sangyoon</creator><creator>Ju, Sungha</creator><creator>Nguyen, Minh Hieu</creator><creator>Yoon, Sanghyun</creator><creator>Heo, Joon</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8779-6694</orcidid></search><sort><creationdate>20231226</creationdate><title>Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System</title><author>Park, Sangyoon ; Ju, Sungha ; Nguyen, Minh Hieu ; Yoon, Sanghyun ; Heo, Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Construction</topic><topic>Lasers</topic><topic>Methods</topic><topic>point cloud registration</topic><topic>Registration</topic><topic>Robotics</topic><topic>Robotics industry</topic><topic>Robots</topic><topic>Scanners</topic><topic>stop-and-go scanning systems</topic><topic>terrestrial laser scanning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sangyoon</creatorcontrib><creatorcontrib>Ju, Sungha</creatorcontrib><creatorcontrib>Nguyen, Minh Hieu</creatorcontrib><creatorcontrib>Yoon, Sanghyun</creatorcontrib><creatorcontrib>Heo, Joon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sangyoon</au><au>Ju, Sungha</au><au>Nguyen, Minh Hieu</au><au>Yoon, Sanghyun</au><au>Heo, Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-12-26</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>138</spage><pages>138-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The latest advances in mobile platforms, such as robots, have enabled the automatic acquisition of full coverage point cloud data from large areas with terrestrial laser scanning. Despite this progress, the crucial post-processing step of registration, which aligns raw point cloud data from separate local coordinate systems into a unified coordinate system, still relies on manual intervention. To address this practical issue, this study presents an automated point cloud registration approach optimized for a stop-and-go scanning system based on a quadruped walking robot. The proposed approach comprises three main phases: perpendicular constrained wall-plane extraction; coarse registration with plane matching using point-to-point displacement calculation; and fine registration with horizontality constrained iterative closest point (ICP). Experimental results indicate that the proposed method successfully achieved automated registration with an accuracy of 0.044 m and a successful scan rate (SSR) of 100% within a time frame of 424.2 s with 18 sets of scan data acquired from the stop-and-go scanning system in a real-world indoor environment. Furthermore, it surpasses conventional approaches, ensuring reliable registration for point cloud pairs with low overlap in specific indoor environmental conditions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38203000</pmid><doi>10.3390/s24010138</doi><orcidid>https://orcid.org/0000-0001-8779-6694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-12, Vol.24 (1), p.138
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f42be1863c42495bacb17217768e64aa
source PubMed Central Free; Publicly Available Content (ProQuest)
subjects Accuracy
Algorithms
Automation
Construction
Lasers
Methods
point cloud registration
Registration
Robotics
Robotics industry
Robots
Scanners
stop-and-go scanning systems
terrestrial laser scanning
title Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Point%20Cloud%20Registration%20Approach%20Optimized%20for%20a%20Stop-and-Go%20Scanning%20System&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Park,%20Sangyoon&rft.date=2023-12-26&rft.volume=24&rft.issue=1&rft.spage=138&rft.pages=138-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24010138&rft_dat=%3Cgale_doaj_%3EA779351247%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-dd97951ec31bbdb2b17102a825db534b794de02f07bc3034bed76a46c608810e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912800229&rft_id=info:pmid/38203000&rft_galeid=A779351247&rfr_iscdi=true