Loading…

An Iron Oxide and Polyaniline Composite-Based Triboelectric Nanogenerator for Intrusion Detection Sensor

An increase in the number of small electronics is anticipated, requiring the preparation of an adequate powering method. A triboelectric nanogenerator, capable of scavenging ambient mechanical energy, is proposed as an efficient means to reduce power consumption for self-sustainable sensors, althoug...

Full description

Saved in:
Bibliographic Details
Published in:Chemosensors 2024-08, Vol.12 (8), p.162
Main Authors: Kim, Inkyum, Park, Jihyeon, Chun, Seungwoo, Yun, Jonghyeon, Lee, Minwoo, Goh, Tae Sik, Park, Wook, Choi, Hyuk Jin, Kim, Daewon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c337t-3780c3b3f9cd3ffbd892bd269f8315de980a1d413ad867bcbc44eee48958aeef3
container_end_page
container_issue 8
container_start_page 162
container_title Chemosensors
container_volume 12
creator Kim, Inkyum
Park, Jihyeon
Chun, Seungwoo
Yun, Jonghyeon
Lee, Minwoo
Goh, Tae Sik
Park, Wook
Choi, Hyuk Jin
Kim, Daewon
description An increase in the number of small electronics is anticipated, requiring the preparation of an adequate powering method. A triboelectric nanogenerator, capable of scavenging ambient mechanical energy, is proposed as an efficient means to reduce power consumption for self-sustainable sensors, although its electrical output needs enhancement to broaden its technological applicability. In this work, a magnetic composite comprising iron oxide and polyaniline was synthesized to augment triboelectricity through the modulation of magnetic field intensity using physical chemistry. The crystallinity of the composite, chemical bonding, and structure of the surface are analyzed. The surface potential of the composite, embedded into polydimethylsiloxane, is quantitatively evaluated by using Kelvin probe force microscopy. By amalgamating magnetic flux density and triboelectric outputs, the optimization of the triboelectric layer is achieved, yielding output values of 93.86 V, 6.9 µA, and 127.5 µW. Following a reduction in surface adhesion after the powder coating process, a wind-based triboelectric nanogenerator is fabricated. Its excellent sensitivity to wind and exceptional long-term endurance are assessed, confirming its suitability as a sensor. The practicality of employing this device in intrusion detection, leveraging a wireless door-opening sensor, is demonstrated using synthesized composite materials.
doi_str_mv 10.3390/chemosensors12080162
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f43ea9a5175e4fde981808d1fb3148d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807424810</galeid><doaj_id>oai_doaj_org_article_f43ea9a5175e4fde981808d1fb3148d8</doaj_id><sourcerecordid>A807424810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3780c3b3f9cd3ffbd892bd269f8315de980a1d413ad867bcbc44eee48958aeef3</originalsourceid><addsrcrecordid>eNptkd9rGzEMx4-ywUrX_2APB32-zr9yZz9mWbsFyjpY92x0tpw63NmZ7UDz389pxtZBJYSE-OqDhJrmAyXXnCvy0TziHDOGHFOmjEhCe3bWnDPGhk4RQd68qN81lzlvSTVFuaT9efO4DO06xdDeP3mLLQTbfo_TAYKffMB2FeddzL5g9wky2vYh-THihKYkb9pvEOIGAyYoMbWuxjqUtM--8j5jqapj9eN5t_fNWwdTxss_-aL5eXvzsPra3d1_Wa-Wd53hfCgdHyQxfOROGcudG61UbLSsV05yurCoJAFqBeVgZT-MZjRCIKKQaiEB0fGLZn3i2ghbvUt-hnTQEbx-bsS00ZCKNxNqJziCggUdFijckU0lkZa6kVMhraysqxNrl-KvPeait3GfQl1fc6IGKXtG2D_VBirUBxdLAjP7bPRSkkEwISmpqutXVNUtzt7EgM7X_n8D4jRgUsw5oft7DCX6-Hn92uf5bySspOk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097886202</pqid></control><display><type>article</type><title>An Iron Oxide and Polyaniline Composite-Based Triboelectric Nanogenerator for Intrusion Detection Sensor</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kim, Inkyum ; Park, Jihyeon ; Chun, Seungwoo ; Yun, Jonghyeon ; Lee, Minwoo ; Goh, Tae Sik ; Park, Wook ; Choi, Hyuk Jin ; Kim, Daewon</creator><creatorcontrib>Kim, Inkyum ; Park, Jihyeon ; Chun, Seungwoo ; Yun, Jonghyeon ; Lee, Minwoo ; Goh, Tae Sik ; Park, Wook ; Choi, Hyuk Jin ; Kim, Daewon</creatorcontrib><description>An increase in the number of small electronics is anticipated, requiring the preparation of an adequate powering method. A triboelectric nanogenerator, capable of scavenging ambient mechanical energy, is proposed as an efficient means to reduce power consumption for self-sustainable sensors, although its electrical output needs enhancement to broaden its technological applicability. In this work, a magnetic composite comprising iron oxide and polyaniline was synthesized to augment triboelectricity through the modulation of magnetic field intensity using physical chemistry. The crystallinity of the composite, chemical bonding, and structure of the surface are analyzed. The surface potential of the composite, embedded into polydimethylsiloxane, is quantitatively evaluated by using Kelvin probe force microscopy. By amalgamating magnetic flux density and triboelectric outputs, the optimization of the triboelectric layer is achieved, yielding output values of 93.86 V, 6.9 µA, and 127.5 µW. Following a reduction in surface adhesion after the powder coating process, a wind-based triboelectric nanogenerator is fabricated. Its excellent sensitivity to wind and exceptional long-term endurance are assessed, confirming its suitability as a sensor. The practicality of employing this device in intrusion detection, leveraging a wireless door-opening sensor, is demonstrated using synthesized composite materials.</description><identifier>ISSN: 2227-9040</identifier><identifier>EISSN: 2227-9040</identifier><identifier>DOI: 10.3390/chemosensors12080162</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chemical bonds ; Chemical properties ; Chemical synthesis ; Composite materials ; Crystallography ; Energy ; Fatigue tests ; Flux density ; intrusion detection ; iron oxide ; Iron oxides ; Magnetic flux ; Materials ; Nanogenerators ; Nanoparticles ; Physical chemistry ; polyaniline composites ; Polyanilines ; Polydimethylsiloxane ; Powder coating ; Power consumption ; Scavenging ; Sensors ; triboelectric nanogenerators ; Wind</subject><ispartof>Chemosensors, 2024-08, Vol.12 (8), p.162</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c337t-3780c3b3f9cd3ffbd892bd269f8315de980a1d413ad867bcbc44eee48958aeef3</cites><orcidid>0000-0002-7928-547X ; 0000-0003-1246-5035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3097886202/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3097886202?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kim, Inkyum</creatorcontrib><creatorcontrib>Park, Jihyeon</creatorcontrib><creatorcontrib>Chun, Seungwoo</creatorcontrib><creatorcontrib>Yun, Jonghyeon</creatorcontrib><creatorcontrib>Lee, Minwoo</creatorcontrib><creatorcontrib>Goh, Tae Sik</creatorcontrib><creatorcontrib>Park, Wook</creatorcontrib><creatorcontrib>Choi, Hyuk Jin</creatorcontrib><creatorcontrib>Kim, Daewon</creatorcontrib><title>An Iron Oxide and Polyaniline Composite-Based Triboelectric Nanogenerator for Intrusion Detection Sensor</title><title>Chemosensors</title><description>An increase in the number of small electronics is anticipated, requiring the preparation of an adequate powering method. A triboelectric nanogenerator, capable of scavenging ambient mechanical energy, is proposed as an efficient means to reduce power consumption for self-sustainable sensors, although its electrical output needs enhancement to broaden its technological applicability. In this work, a magnetic composite comprising iron oxide and polyaniline was synthesized to augment triboelectricity through the modulation of magnetic field intensity using physical chemistry. The crystallinity of the composite, chemical bonding, and structure of the surface are analyzed. The surface potential of the composite, embedded into polydimethylsiloxane, is quantitatively evaluated by using Kelvin probe force microscopy. By amalgamating magnetic flux density and triboelectric outputs, the optimization of the triboelectric layer is achieved, yielding output values of 93.86 V, 6.9 µA, and 127.5 µW. Following a reduction in surface adhesion after the powder coating process, a wind-based triboelectric nanogenerator is fabricated. Its excellent sensitivity to wind and exceptional long-term endurance are assessed, confirming its suitability as a sensor. The practicality of employing this device in intrusion detection, leveraging a wireless door-opening sensor, is demonstrated using synthesized composite materials.</description><subject>Chemical bonds</subject><subject>Chemical properties</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Crystallography</subject><subject>Energy</subject><subject>Fatigue tests</subject><subject>Flux density</subject><subject>intrusion detection</subject><subject>iron oxide</subject><subject>Iron oxides</subject><subject>Magnetic flux</subject><subject>Materials</subject><subject>Nanogenerators</subject><subject>Nanoparticles</subject><subject>Physical chemistry</subject><subject>polyaniline composites</subject><subject>Polyanilines</subject><subject>Polydimethylsiloxane</subject><subject>Powder coating</subject><subject>Power consumption</subject><subject>Scavenging</subject><subject>Sensors</subject><subject>triboelectric nanogenerators</subject><subject>Wind</subject><issn>2227-9040</issn><issn>2227-9040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkd9rGzEMx4-ywUrX_2APB32-zr9yZz9mWbsFyjpY92x0tpw63NmZ7UDz389pxtZBJYSE-OqDhJrmAyXXnCvy0TziHDOGHFOmjEhCe3bWnDPGhk4RQd68qN81lzlvSTVFuaT9efO4DO06xdDeP3mLLQTbfo_TAYKffMB2FeddzL5g9wky2vYh-THihKYkb9pvEOIGAyYoMbWuxjqUtM--8j5jqapj9eN5t_fNWwdTxss_-aL5eXvzsPra3d1_Wa-Wd53hfCgdHyQxfOROGcudG61UbLSsV05yurCoJAFqBeVgZT-MZjRCIKKQaiEB0fGLZn3i2ghbvUt-hnTQEbx-bsS00ZCKNxNqJziCggUdFijckU0lkZa6kVMhraysqxNrl-KvPeait3GfQl1fc6IGKXtG2D_VBirUBxdLAjP7bPRSkkEwISmpqutXVNUtzt7EgM7X_n8D4jRgUsw5oft7DCX6-Hn92uf5bySspOk</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kim, Inkyum</creator><creator>Park, Jihyeon</creator><creator>Chun, Seungwoo</creator><creator>Yun, Jonghyeon</creator><creator>Lee, Minwoo</creator><creator>Goh, Tae Sik</creator><creator>Park, Wook</creator><creator>Choi, Hyuk Jin</creator><creator>Kim, Daewon</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7928-547X</orcidid><orcidid>https://orcid.org/0000-0003-1246-5035</orcidid></search><sort><creationdate>20240801</creationdate><title>An Iron Oxide and Polyaniline Composite-Based Triboelectric Nanogenerator for Intrusion Detection Sensor</title><author>Kim, Inkyum ; Park, Jihyeon ; Chun, Seungwoo ; Yun, Jonghyeon ; Lee, Minwoo ; Goh, Tae Sik ; Park, Wook ; Choi, Hyuk Jin ; Kim, Daewon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3780c3b3f9cd3ffbd892bd269f8315de980a1d413ad867bcbc44eee48958aeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical bonds</topic><topic>Chemical properties</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Crystallography</topic><topic>Energy</topic><topic>Fatigue tests</topic><topic>Flux density</topic><topic>intrusion detection</topic><topic>iron oxide</topic><topic>Iron oxides</topic><topic>Magnetic flux</topic><topic>Materials</topic><topic>Nanogenerators</topic><topic>Nanoparticles</topic><topic>Physical chemistry</topic><topic>polyaniline composites</topic><topic>Polyanilines</topic><topic>Polydimethylsiloxane</topic><topic>Powder coating</topic><topic>Power consumption</topic><topic>Scavenging</topic><topic>Sensors</topic><topic>triboelectric nanogenerators</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Inkyum</creatorcontrib><creatorcontrib>Park, Jihyeon</creatorcontrib><creatorcontrib>Chun, Seungwoo</creatorcontrib><creatorcontrib>Yun, Jonghyeon</creatorcontrib><creatorcontrib>Lee, Minwoo</creatorcontrib><creatorcontrib>Goh, Tae Sik</creatorcontrib><creatorcontrib>Park, Wook</creatorcontrib><creatorcontrib>Choi, Hyuk Jin</creatorcontrib><creatorcontrib>Kim, Daewon</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Chemosensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Inkyum</au><au>Park, Jihyeon</au><au>Chun, Seungwoo</au><au>Yun, Jonghyeon</au><au>Lee, Minwoo</au><au>Goh, Tae Sik</au><au>Park, Wook</au><au>Choi, Hyuk Jin</au><au>Kim, Daewon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Iron Oxide and Polyaniline Composite-Based Triboelectric Nanogenerator for Intrusion Detection Sensor</atitle><jtitle>Chemosensors</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>12</volume><issue>8</issue><spage>162</spage><pages>162-</pages><issn>2227-9040</issn><eissn>2227-9040</eissn><abstract>An increase in the number of small electronics is anticipated, requiring the preparation of an adequate powering method. A triboelectric nanogenerator, capable of scavenging ambient mechanical energy, is proposed as an efficient means to reduce power consumption for self-sustainable sensors, although its electrical output needs enhancement to broaden its technological applicability. In this work, a magnetic composite comprising iron oxide and polyaniline was synthesized to augment triboelectricity through the modulation of magnetic field intensity using physical chemistry. The crystallinity of the composite, chemical bonding, and structure of the surface are analyzed. The surface potential of the composite, embedded into polydimethylsiloxane, is quantitatively evaluated by using Kelvin probe force microscopy. By amalgamating magnetic flux density and triboelectric outputs, the optimization of the triboelectric layer is achieved, yielding output values of 93.86 V, 6.9 µA, and 127.5 µW. Following a reduction in surface adhesion after the powder coating process, a wind-based triboelectric nanogenerator is fabricated. Its excellent sensitivity to wind and exceptional long-term endurance are assessed, confirming its suitability as a sensor. The practicality of employing this device in intrusion detection, leveraging a wireless door-opening sensor, is demonstrated using synthesized composite materials.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/chemosensors12080162</doi><orcidid>https://orcid.org/0000-0002-7928-547X</orcidid><orcidid>https://orcid.org/0000-0003-1246-5035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9040
ispartof Chemosensors, 2024-08, Vol.12 (8), p.162
issn 2227-9040
2227-9040
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f43ea9a5175e4fde981808d1fb3148d8
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Chemical bonds
Chemical properties
Chemical synthesis
Composite materials
Crystallography
Energy
Fatigue tests
Flux density
intrusion detection
iron oxide
Iron oxides
Magnetic flux
Materials
Nanogenerators
Nanoparticles
Physical chemistry
polyaniline composites
Polyanilines
Polydimethylsiloxane
Powder coating
Power consumption
Scavenging
Sensors
triboelectric nanogenerators
Wind
title An Iron Oxide and Polyaniline Composite-Based Triboelectric Nanogenerator for Intrusion Detection Sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Iron%20Oxide%20and%20Polyaniline%20Composite-Based%20Triboelectric%20Nanogenerator%20for%20Intrusion%20Detection%20Sensor&rft.jtitle=Chemosensors&rft.au=Kim,%20Inkyum&rft.date=2024-08-01&rft.volume=12&rft.issue=8&rft.spage=162&rft.pages=162-&rft.issn=2227-9040&rft.eissn=2227-9040&rft_id=info:doi/10.3390/chemosensors12080162&rft_dat=%3Cgale_doaj_%3EA807424810%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-3780c3b3f9cd3ffbd892bd269f8315de980a1d413ad867bcbc44eee48958aeef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097886202&rft_id=info:pmid/&rft_galeid=A807424810&rfr_iscdi=true