Loading…

A framework for white blood cell segmentation in microscopic blood images using digital image processing

Evaluation of blood smear is a commonly clinical test these days. Most of the time, the hematologists are interested on white blood cells (WBCs) only. Digital image processing techniques can help them in their analysis and diagnosis. For example, disease like acute leukemia is detected based on the...

Full description

Saved in:
Bibliographic Details
Published in:Biological procedures online 2009-06, Vol.11 (1), p.196-206, Article 196
Main Authors: Sadeghian, Farnoosh, Seman, Zainina, Ramli, Abdul Rahman, Abdul Kahar, Badrul Hisham, Saripan, M-Iqbal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evaluation of blood smear is a commonly clinical test these days. Most of the time, the hematologists are interested on white blood cells (WBCs) only. Digital image processing techniques can help them in their analysis and diagnosis. For example, disease like acute leukemia is detected based on the amount and condition of the WBC. The main objective of this paper is to segment the WBC to its two dominant elements: nucleus and cytoplasm. The segmentation is conducted using a proposed segmentation framework that consists of an integration of several digital image processing algorithms. Twenty microscopic blood images were tested, and the proposed framework managed to obtain 92% accuracy for nucleus segmentation and 78% for cytoplasm segmentation. The results indicate that the proposed framework is able to extract the nucleus and cytoplasm region in a WBC image sample.
ISSN:1480-9222
1480-9222
DOI:10.1007/s12575-009-9011-2