Loading…

Accelerating photonic computing by bandwidth enhancement of a time-delay reservoir

Semiconductor lasers (SLs) that are subject to delayed optical feedback and external optical injection have been demonstrated to perform information processing using the photonic reservoir computing paradigm. Optical injection or optical feedback can under some conditions induce bandwidth-enhanced o...

Full description

Saved in:
Bibliographic Details
Published in:Nanophotonics (Berlin, Germany) Germany), 2020-06, Vol.9 (13), p.4163-4171
Main Authors: Estébanez, Irene, Schwind, Janek, Fischer, Ingo, Argyris, Apostolos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconductor lasers (SLs) that are subject to delayed optical feedback and external optical injection have been demonstrated to perform information processing using the photonic reservoir computing paradigm. Optical injection or optical feedback can under some conditions induce bandwidth-enhanced operation, expanding their modulation response up to several tens of GHz. However, these conditions may not always result in the best performance for computational tasks, since the dynamical and nonlinear properties of the reservoir might change as well. Here we show that by using strong optical injection we can obtain an increased frequency response and a significant acceleration in the information processing capability of this nonlinear system, without loss of performance. Specifically, we demonstrate numerically that the sampling time of the photonic reservoir can be as small as 12 ps while preserving the same computational performance when compared to a much slower sampling rate. We also show that strong optical injection expands the reservoir’s operating conditions for which we obtain improved task performance. The latter is validated experimentally for larger sampling times of 100 ps. The above attributes are demonstrated in a coherent optical communication decoding task.
ISSN:2192-8606
2192-8614
DOI:10.1515/nanoph-2020-0184