Loading…
CDI Exerts Anti-Tumor Effects by Blocking the FoxM1-DNA Interaction
The Forkhead box protein M1 (FoxM1) is an appealing target for anti-cancer therapeutics as this cell proliferation-associated transcription factor is overexpressed in most human cancers. FoxM1 is involved in tumor invasion, angiogenesis, and metastasis. To discover novel inhibitors that disrupt the...
Saved in:
Published in: | Biomedicines 2022-07, Vol.10 (7), p.1671 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Forkhead box protein M1 (FoxM1) is an appealing target for anti-cancer therapeutics as this cell proliferation-associated transcription factor is overexpressed in most human cancers. FoxM1 is involved in tumor invasion, angiogenesis, and metastasis. To discover novel inhibitors that disrupt the FoxM1-DNA interaction, we identified CDI, a small molecule that inhibits the FoxM1–DNA interaction. CDI was identified through an assay based on the time-resolved fluorescence energy transfer response of a labeled consensus oligonucleotide that was bound to a recombinant FoxM1-dsDNA binding domain (FoxM1-DBD) protein and exhibited potent inhibitory activity against FoxM1-DNA interaction. CDI suppressed cell proliferation and induced apoptosis in MDA-MB-231 cells obtained from a breast cancer patient. Furthermore, it decreased not only the mRNA and protein expression of FoxM1 but also that of downstream targets such as CDC25b. Additionally, global transcript profiling of MDA-MB-231 cells by RNA-Seq showed that CDI decreases the expression of FoxM1-regulated genes. The docking and MD simulation results indicated that CDI likely binds to the DNA interaction site of FoxM1-DBD and inhibits the function of FoxM1-DBD. These results of CDI being a possible effective inhibitor of FoxM1-DNA interaction will encourage its usage in pharmaceutical applications. |
---|---|
ISSN: | 2227-9059 2227-9059 |
DOI: | 10.3390/biomedicines10071671 |