Loading…
Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides
It has been unclear to which antimicrobial activities (e.g., anti-gram-positive bacterial, anti-gram-negative bacterial, antifungal, antiparasitic, and antiviral activities) of antimicrobial peptides (AMPs) a given physiochemical property matters most. This is the first computational study using lar...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2017-11, Vol.22 (11), p.2037 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been unclear to which antimicrobial activities (e.g., anti-gram-positive bacterial, anti-gram-negative bacterial, antifungal, antiparasitic, and antiviral activities) of antimicrobial peptides (AMPs) a given physiochemical property matters most. This is the first computational study using large-scale AMPs to examine the relationships between antimicrobial activities and two major physiochemical properties of AMPs-amphipathicity and net charge. The results showed that among all kinds of antimicrobial activities, amphipathicity and net charge best differentiated between AMPs with and without anti-gram-negative bacterial activities. In terms of amphipathicity and charge, all the AMPs whose activities were significantly associated with amphipathicity and net charge were alike except those with anti-gram-positive bacterial activities. Furthermore, the higher the amphipathic value, the greater the proportion of AMPs possessing both antibacterial and antifungal activities. This dose-response-like pattern suggests a possible causal relationship-dual antibacterial and antifungal activities of AMPs may be attributable to amphipathicity. These novel findings could be useful for identifying potent AMPs computationally. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules22112037 |