Loading…

Improved low-rank matrix recovery method for predicting miRNA-disease association

MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-07, Vol.7 (1), p.6007-10, Article 6007
Main Authors: Peng, Li, Peng, Manman, Liao, Bo, Huang, Guohua, Liang, Wei, Li, Keqin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3
cites cdi_FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3
container_end_page 10
container_issue 1
container_start_page 6007
container_title Scientific reports
container_volume 7
creator Peng, Li
Peng, Manman
Liao, Bo
Huang, Guohua
Liang, Wei
Li, Keqin
description MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies.
doi_str_mv 10.1038/s41598-017-06201-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4af1f5773e542e4858c49bbf482e52f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4af1f5773e542e4858c49bbf482e52f</doaj_id><sourcerecordid>1922507506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEolXpH-CAInHhErDHH4kvSFVVYKUKBIKzNXHGWy9JvNjZQv89pluqLRK-eDTz-J2x_VbVc85ecya6N1lyZbqG8bZhGhhvxKPqGJhUDQiAxwfxUXWa84aVpcBIbp5WR9C1YBR0x9Xn1bRN8ZqGeow_m4Tz93rCJYVfdSJX8ummnmi5ikPtY6q3iYbgljCv6yl8-XjWDCETZqox5-gCLiHOz6onHsdMp3f7SfXt3cXX8w_N5af3q_Ozy8YpyZamZ1RGUNoNTkipwKuOBCIj6QCRkwfDJGomWt_2mqOTJVCgtTPSO9-Lk2q11x0ibuw2hQnTjY0Y7G0iprXFtAQ3kvUSPfeqbQUpCSQ71Tlp-t7LDqi0Llpv91rbXT_R4GheEo4PRB9W5nBl1_HaKsWNMrIIvLoTSPHHjvJip5AdjSPOFHfZcgOgWKuYLujLf9BN3KW5PFWhlOZag4ZCwZ5yKeacyN8Pw5n9YwC7N4AtBrC3BrCiHHpxeI37I3-_uwBiD-RSmteUDnr_X_Y3z4u8HA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956166262</pqid></control><display><type>article</type><title>Improved low-rank matrix recovery method for predicting miRNA-disease association</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Peng, Li ; Peng, Manman ; Liao, Bo ; Huang, Guohua ; Liang, Wei ; Li, Keqin</creator><creatorcontrib>Peng, Li ; Peng, Manman ; Liao, Bo ; Huang, Guohua ; Liang, Wei ; Li, Keqin</creatorcontrib><description>MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-06201-3</identifier><identifier>PMID: 28729528</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/553/2695 ; Computer applications ; Disease ; Humanities and Social Sciences ; miRNA ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2017-07, Vol.7 (1), p.6007-10, Article 6007</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3</citedby><cites>FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1956166262/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1956166262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28729528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Peng, Manman</creatorcontrib><creatorcontrib>Liao, Bo</creatorcontrib><creatorcontrib>Huang, Guohua</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><title>Improved low-rank matrix recovery method for predicting miRNA-disease association</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies.</description><subject>631/114/1305</subject><subject>631/553/2695</subject><subject>Computer applications</subject><subject>Disease</subject><subject>Humanities and Social Sciences</subject><subject>miRNA</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiMEolXpH-CAInHhErDHH4kvSFVVYKUKBIKzNXHGWy9JvNjZQv89pluqLRK-eDTz-J2x_VbVc85ecya6N1lyZbqG8bZhGhhvxKPqGJhUDQiAxwfxUXWa84aVpcBIbp5WR9C1YBR0x9Xn1bRN8ZqGeow_m4Tz93rCJYVfdSJX8ummnmi5ikPtY6q3iYbgljCv6yl8-XjWDCETZqox5-gCLiHOz6onHsdMp3f7SfXt3cXX8w_N5af3q_Ozy8YpyZamZ1RGUNoNTkipwKuOBCIj6QCRkwfDJGomWt_2mqOTJVCgtTPSO9-Lk2q11x0ibuw2hQnTjY0Y7G0iprXFtAQ3kvUSPfeqbQUpCSQ71Tlp-t7LDqi0Llpv91rbXT_R4GheEo4PRB9W5nBl1_HaKsWNMrIIvLoTSPHHjvJip5AdjSPOFHfZcgOgWKuYLujLf9BN3KW5PFWhlOZag4ZCwZ5yKeacyN8Pw5n9YwC7N4AtBrC3BrCiHHpxeI37I3-_uwBiD-RSmteUDnr_X_Y3z4u8HA</recordid><startdate>20170720</startdate><enddate>20170720</enddate><creator>Peng, Li</creator><creator>Peng, Manman</creator><creator>Liao, Bo</creator><creator>Huang, Guohua</creator><creator>Liang, Wei</creator><creator>Li, Keqin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170720</creationdate><title>Improved low-rank matrix recovery method for predicting miRNA-disease association</title><author>Peng, Li ; Peng, Manman ; Liao, Bo ; Huang, Guohua ; Liang, Wei ; Li, Keqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/114/1305</topic><topic>631/553/2695</topic><topic>Computer applications</topic><topic>Disease</topic><topic>Humanities and Social Sciences</topic><topic>miRNA</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Peng, Manman</creatorcontrib><creatorcontrib>Liao, Bo</creatorcontrib><creatorcontrib>Huang, Guohua</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Li</au><au>Peng, Manman</au><au>Liao, Bo</au><au>Huang, Guohua</au><au>Liang, Wei</au><au>Li, Keqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved low-rank matrix recovery method for predicting miRNA-disease association</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-07-20</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>6007</spage><epage>10</epage><pages>6007-10</pages><artnum>6007</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28729528</pmid><doi>10.1038/s41598-017-06201-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-07, Vol.7 (1), p.6007-10, Article 6007
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f4af1f5773e542e4858c49bbf482e52f
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/1305
631/553/2695
Computer applications
Disease
Humanities and Social Sciences
miRNA
multidisciplinary
Science
Science (multidisciplinary)
title Improved low-rank matrix recovery method for predicting miRNA-disease association
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20low-rank%20matrix%20recovery%20method%20for%20predicting%20miRNA-disease%20association&rft.jtitle=Scientific%20reports&rft.au=Peng,%20Li&rft.date=2017-07-20&rft.volume=7&rft.issue=1&rft.spage=6007&rft.epage=10&rft.pages=6007-10&rft.artnum=6007&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-06201-3&rft_dat=%3Cproquest_doaj_%3E1922507506%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956166262&rft_id=info:pmid/28729528&rfr_iscdi=true