Loading…
Improved low-rank matrix recovery method for predicting miRNA-disease association
MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational...
Saved in:
Published in: | Scientific reports 2017-07, Vol.7 (1), p.6007-10, Article 6007 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 6007 |
container_title | Scientific reports |
container_volume | 7 |
creator | Peng, Li Peng, Manman Liao, Bo Huang, Guohua Liang, Wei Li, Keqin |
description | MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies. |
doi_str_mv | 10.1038/s41598-017-06201-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4af1f5773e542e4858c49bbf482e52f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4af1f5773e542e4858c49bbf482e52f</doaj_id><sourcerecordid>1922507506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEolXpH-CAInHhErDHH4kvSFVVYKUKBIKzNXHGWy9JvNjZQv89pluqLRK-eDTz-J2x_VbVc85ecya6N1lyZbqG8bZhGhhvxKPqGJhUDQiAxwfxUXWa84aVpcBIbp5WR9C1YBR0x9Xn1bRN8ZqGeow_m4Tz93rCJYVfdSJX8ummnmi5ikPtY6q3iYbgljCv6yl8-XjWDCETZqox5-gCLiHOz6onHsdMp3f7SfXt3cXX8w_N5af3q_Ozy8YpyZamZ1RGUNoNTkipwKuOBCIj6QCRkwfDJGomWt_2mqOTJVCgtTPSO9-Lk2q11x0ibuw2hQnTjY0Y7G0iprXFtAQ3kvUSPfeqbQUpCSQ71Tlp-t7LDqi0Llpv91rbXT_R4GheEo4PRB9W5nBl1_HaKsWNMrIIvLoTSPHHjvJip5AdjSPOFHfZcgOgWKuYLujLf9BN3KW5PFWhlOZag4ZCwZ5yKeacyN8Pw5n9YwC7N4AtBrC3BrCiHHpxeI37I3-_uwBiD-RSmteUDnr_X_Y3z4u8HA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956166262</pqid></control><display><type>article</type><title>Improved low-rank matrix recovery method for predicting miRNA-disease association</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Peng, Li ; Peng, Manman ; Liao, Bo ; Huang, Guohua ; Liang, Wei ; Li, Keqin</creator><creatorcontrib>Peng, Li ; Peng, Manman ; Liao, Bo ; Huang, Guohua ; Liang, Wei ; Li, Keqin</creatorcontrib><description>MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-06201-3</identifier><identifier>PMID: 28729528</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/553/2695 ; Computer applications ; Disease ; Humanities and Social Sciences ; miRNA ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2017-07, Vol.7 (1), p.6007-10, Article 6007</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3</citedby><cites>FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1956166262/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1956166262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28729528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Peng, Manman</creatorcontrib><creatorcontrib>Liao, Bo</creatorcontrib><creatorcontrib>Huang, Guohua</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><title>Improved low-rank matrix recovery method for predicting miRNA-disease association</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies.</description><subject>631/114/1305</subject><subject>631/553/2695</subject><subject>Computer applications</subject><subject>Disease</subject><subject>Humanities and Social Sciences</subject><subject>miRNA</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiMEolXpH-CAInHhErDHH4kvSFVVYKUKBIKzNXHGWy9JvNjZQv89pluqLRK-eDTz-J2x_VbVc85ecya6N1lyZbqG8bZhGhhvxKPqGJhUDQiAxwfxUXWa84aVpcBIbp5WR9C1YBR0x9Xn1bRN8ZqGeow_m4Tz93rCJYVfdSJX8ummnmi5ikPtY6q3iYbgljCv6yl8-XjWDCETZqox5-gCLiHOz6onHsdMp3f7SfXt3cXX8w_N5af3q_Ozy8YpyZamZ1RGUNoNTkipwKuOBCIj6QCRkwfDJGomWt_2mqOTJVCgtTPSO9-Lk2q11x0ibuw2hQnTjY0Y7G0iprXFtAQ3kvUSPfeqbQUpCSQ71Tlp-t7LDqi0Llpv91rbXT_R4GheEo4PRB9W5nBl1_HaKsWNMrIIvLoTSPHHjvJip5AdjSPOFHfZcgOgWKuYLujLf9BN3KW5PFWhlOZag4ZCwZ5yKeacyN8Pw5n9YwC7N4AtBrC3BrCiHHpxeI37I3-_uwBiD-RSmteUDnr_X_Y3z4u8HA</recordid><startdate>20170720</startdate><enddate>20170720</enddate><creator>Peng, Li</creator><creator>Peng, Manman</creator><creator>Liao, Bo</creator><creator>Huang, Guohua</creator><creator>Liang, Wei</creator><creator>Li, Keqin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170720</creationdate><title>Improved low-rank matrix recovery method for predicting miRNA-disease association</title><author>Peng, Li ; Peng, Manman ; Liao, Bo ; Huang, Guohua ; Liang, Wei ; Li, Keqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/114/1305</topic><topic>631/553/2695</topic><topic>Computer applications</topic><topic>Disease</topic><topic>Humanities and Social Sciences</topic><topic>miRNA</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Peng, Manman</creatorcontrib><creatorcontrib>Liao, Bo</creatorcontrib><creatorcontrib>Huang, Guohua</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Li</au><au>Peng, Manman</au><au>Liao, Bo</au><au>Huang, Guohua</au><au>Liang, Wei</au><au>Li, Keqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved low-rank matrix recovery method for predicting miRNA-disease association</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-07-20</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>6007</spage><epage>10</epage><pages>6007-10</pages><artnum>6007</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>MicroRNAs (miRNAs) performs crucial roles in various human diseases, but miRNA-related pathogenic mechanisms remain incompletely understood. Revealing the potential relationship between miRNAs and diseases is a critical problem in biomedical research. Considering limitation of existing computational approaches, we develop improved low-rank matrix recovery (ILRMR) for miRNA-disease association prediction. ILRMR is a global method that can simultaneously prioritize potential association for all diseases and does not require negative samples. ILRMR can also identify promising miRNAs for investigating diseases without any known related miRNA. By integrating miRNA-miRNA similarity information, disease-disease similarity information, and miRNA family information to matrix recovery, ILRMR performs better than other methods in cross validation and case studies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28729528</pmid><doi>10.1038/s41598-017-06201-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-07, Vol.7 (1), p.6007-10, Article 6007 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f4af1f5773e542e4858c49bbf482e52f |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1305 631/553/2695 Computer applications Disease Humanities and Social Sciences miRNA multidisciplinary Science Science (multidisciplinary) |
title | Improved low-rank matrix recovery method for predicting miRNA-disease association |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20low-rank%20matrix%20recovery%20method%20for%20predicting%20miRNA-disease%20association&rft.jtitle=Scientific%20reports&rft.au=Peng,%20Li&rft.date=2017-07-20&rft.volume=7&rft.issue=1&rft.spage=6007&rft.epage=10&rft.pages=6007-10&rft.artnum=6007&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-06201-3&rft_dat=%3Cproquest_doaj_%3E1922507506%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-b0e29556cdc34452f58e3aa0e4c2aa1ef2904a6037f7b61ac47f75266c94fcfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956166262&rft_id=info:pmid/28729528&rfr_iscdi=true |