Loading…

Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential

The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane cha...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-08, Vol.9 (1), p.3187-8, Article 3187
Main Authors: Björck, Markus L., Brzezinski, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973
cites cdi_FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973
container_end_page 8
container_issue 1
container_start_page 3187
container_title Nature communications
container_volume 9
creator Björck, Markus L.
Brzezinski, Peter
description The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane charge transfer. Here, we investigate this feedback mechanism in cytochrome c oxidase in intact inner mitochondrial membranes upon generation of an electrochemical potential by hydrolysis of ATP. The data indicate that a reaction step that involves proton uptake to the catalytic site and presumably proton translocation is impaired by the potential, but electron transfer is not affected. These results define the order of electron and proton-transfer reactions and suggest that the proton pump is regulated by the transmembrane electrochemical gradient through control of internal proton transfer rather than by control of electron transfer. Cytochrome c oxidase (Cyt c O) is the last enzyme of the electron transport chain, but how the electrochemical membrane potential affects Cyt c O is unclear. Here the authors show that proton uptake to the catalytic site of Cyt c O and presumably proton translocation was impaired by the potential, but electron transfer was not affected.
doi_str_mv 10.1038/s41467-018-05615-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4bcba95d2864bbaaa90dae138690215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4bcba95d2864bbaaa90dae138690215</doaj_id><sourcerecordid>2087590604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973</originalsourceid><addsrcrecordid>eNp9kk2P0zAQhiMEYlfL_gEOKBIXDgRmYsexL0ir8rXSSlyAAxfLccZtqiQudgr03-M2pWw54MtYM8-89ozeLHuK8AqBydeRIxd1ASgLqARWRfUguyyBY4F1yR7eu19k1zGuIR2mUHL-OLtgAIqJGi6zbws_TsH3uXf5FMwYBxqaFCm3KxOWNCcdhbwbc7ubvF0FP6Rq7n91rYmUN7t8WlF-6tv4icapM_2T7JEzfaTrY7zKvrx_93nxsbj79OF2cXNXWMHZVJCUVjmJqiXpTEslglKNc3UN6IhVLWOmdsTRIJfIjGQtQGNk5RjjStXsKruddVtv1noTusGEnfam04eED0ttwtTZnrTjjW2MqtpSCt40xhgFrSFkUigosUpaL2et-JM22-ZM7W339eagFrcaBSCKhL-Z8cQO1No0eDD9Wdd5ZexWeul_aAGyYqVMAi-OAsF_31Kc9NBFS32fNum3UZcg60qBAJ7Q5_-ga78NY9rsnhIlr9I-ElXOlA0-xkDu9BkEvTeOno2jk3H0wTh6P_Wz-2OcWv7YJAHsuJZUGpcU_r79H9nfEFbPCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086245334</pqid></control><display><type>article</type><title>Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Björck, Markus L. ; Brzezinski, Peter</creator><creatorcontrib>Björck, Markus L. ; Brzezinski, Peter</creatorcontrib><description>The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane charge transfer. Here, we investigate this feedback mechanism in cytochrome c oxidase in intact inner mitochondrial membranes upon generation of an electrochemical potential by hydrolysis of ATP. The data indicate that a reaction step that involves proton uptake to the catalytic site and presumably proton translocation is impaired by the potential, but electron transfer is not affected. These results define the order of electron and proton-transfer reactions and suggest that the proton pump is regulated by the transmembrane electrochemical gradient through control of internal proton transfer rather than by control of electron transfer. Cytochrome c oxidase (Cyt c O) is the last enzyme of the electron transport chain, but how the electrochemical membrane potential affects Cyt c O is unclear. Here the authors show that proton uptake to the catalytic site of Cyt c O and presumably proton translocation was impaired by the potential, but electron transfer was not affected.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-05615-5</identifier><identifier>PMID: 30093670</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/173 ; 631/45/49/1140 ; 631/45/49/1141 ; 631/45/49/1142 ; 631/57/1464 ; Adenosine Triphosphate - chemistry ; Animals ; Biochemistry ; biokemi ; Catalysis ; Catalytic Domain ; Cattle ; Charge transfer ; Chemical reactions ; Cytochrome ; Cytochrome-c oxidase ; Cytochromes ; Electrochemical potential ; Electrochemistry ; Electron transfer ; Electron Transport ; Electron Transport Complex IV - metabolism ; Electrons ; Humanities and Social Sciences ; Hydrogen-Ion Concentration ; Hydrolysis ; Ion Transport ; Membrane potential ; Membrane Potential, Mitochondrial ; Membranes ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitochondrial Membranes - metabolism ; multidisciplinary ; Myocardium - metabolism ; Oxidase ; Oxygen - chemistry ; Proteins ; Proton Pumps - metabolism ; Protons ; Science ; Science (multidisciplinary) ; Translocation</subject><ispartof>Nature communications, 2018-08, Vol.9 (1), p.3187-8, Article 3187</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973</citedby><cites>FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2086245334/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2086245334?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30093670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-160116$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Björck, Markus L.</creatorcontrib><creatorcontrib>Brzezinski, Peter</creatorcontrib><title>Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane charge transfer. Here, we investigate this feedback mechanism in cytochrome c oxidase in intact inner mitochondrial membranes upon generation of an electrochemical potential by hydrolysis of ATP. The data indicate that a reaction step that involves proton uptake to the catalytic site and presumably proton translocation is impaired by the potential, but electron transfer is not affected. These results define the order of electron and proton-transfer reactions and suggest that the proton pump is regulated by the transmembrane electrochemical gradient through control of internal proton transfer rather than by control of electron transfer. Cytochrome c oxidase (Cyt c O) is the last enzyme of the electron transport chain, but how the electrochemical membrane potential affects Cyt c O is unclear. Here the authors show that proton uptake to the catalytic site of Cyt c O and presumably proton translocation was impaired by the potential, but electron transfer was not affected.</description><subject>631/45/173</subject><subject>631/45/49/1140</subject><subject>631/45/49/1141</subject><subject>631/45/49/1142</subject><subject>631/57/1464</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>biokemi</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cattle</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Cytochrome</subject><subject>Cytochrome-c oxidase</subject><subject>Cytochromes</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Ion Transport</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>multidisciplinary</subject><subject>Myocardium - metabolism</subject><subject>Oxidase</subject><subject>Oxygen - chemistry</subject><subject>Proteins</subject><subject>Proton Pumps - metabolism</subject><subject>Protons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Translocation</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk2P0zAQhiMEYlfL_gEOKBIXDgRmYsexL0ir8rXSSlyAAxfLccZtqiQudgr03-M2pWw54MtYM8-89ozeLHuK8AqBydeRIxd1ASgLqARWRfUguyyBY4F1yR7eu19k1zGuIR2mUHL-OLtgAIqJGi6zbws_TsH3uXf5FMwYBxqaFCm3KxOWNCcdhbwbc7ubvF0FP6Rq7n91rYmUN7t8WlF-6tv4icapM_2T7JEzfaTrY7zKvrx_93nxsbj79OF2cXNXWMHZVJCUVjmJqiXpTEslglKNc3UN6IhVLWOmdsTRIJfIjGQtQGNk5RjjStXsKruddVtv1noTusGEnfam04eED0ttwtTZnrTjjW2MqtpSCt40xhgFrSFkUigosUpaL2et-JM22-ZM7W339eagFrcaBSCKhL-Z8cQO1No0eDD9Wdd5ZexWeul_aAGyYqVMAi-OAsF_31Kc9NBFS32fNum3UZcg60qBAJ7Q5_-ga78NY9rsnhIlr9I-ElXOlA0-xkDu9BkEvTeOno2jk3H0wTh6P_Wz-2OcWv7YJAHsuJZUGpcU_r79H9nfEFbPCA</recordid><startdate>20180809</startdate><enddate>20180809</enddate><creator>Björck, Markus L.</creator><creator>Brzezinski, Peter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20180809</creationdate><title>Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential</title><author>Björck, Markus L. ; Brzezinski, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/45/173</topic><topic>631/45/49/1140</topic><topic>631/45/49/1141</topic><topic>631/45/49/1142</topic><topic>631/57/1464</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>biokemi</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cattle</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Cytochrome</topic><topic>Cytochrome-c oxidase</topic><topic>Cytochromes</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Ion Transport</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>multidisciplinary</topic><topic>Myocardium - metabolism</topic><topic>Oxidase</topic><topic>Oxygen - chemistry</topic><topic>Proteins</topic><topic>Proton Pumps - metabolism</topic><topic>Protons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Björck, Markus L.</creatorcontrib><creatorcontrib>Brzezinski, Peter</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Björck, Markus L.</au><au>Brzezinski, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-08-09</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>3187</spage><epage>8</epage><pages>3187-8</pages><artnum>3187</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane charge transfer. Here, we investigate this feedback mechanism in cytochrome c oxidase in intact inner mitochondrial membranes upon generation of an electrochemical potential by hydrolysis of ATP. The data indicate that a reaction step that involves proton uptake to the catalytic site and presumably proton translocation is impaired by the potential, but electron transfer is not affected. These results define the order of electron and proton-transfer reactions and suggest that the proton pump is regulated by the transmembrane electrochemical gradient through control of internal proton transfer rather than by control of electron transfer. Cytochrome c oxidase (Cyt c O) is the last enzyme of the electron transport chain, but how the electrochemical membrane potential affects Cyt c O is unclear. Here the authors show that proton uptake to the catalytic site of Cyt c O and presumably proton translocation was impaired by the potential, but electron transfer was not affected.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30093670</pmid><doi>10.1038/s41467-018-05615-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-08, Vol.9 (1), p.3187-8, Article 3187
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f4bcba95d2864bbaaa90dae138690215
source Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/173
631/45/49/1140
631/45/49/1141
631/45/49/1142
631/57/1464
Adenosine Triphosphate - chemistry
Animals
Biochemistry
biokemi
Catalysis
Catalytic Domain
Cattle
Charge transfer
Chemical reactions
Cytochrome
Cytochrome-c oxidase
Cytochromes
Electrochemical potential
Electrochemistry
Electron transfer
Electron Transport
Electron Transport Complex IV - metabolism
Electrons
Humanities and Social Sciences
Hydrogen-Ion Concentration
Hydrolysis
Ion Transport
Membrane potential
Membrane Potential, Mitochondrial
Membranes
Mitochondria
Mitochondria - metabolism
Mitochondrial DNA
Mitochondrial Membranes - metabolism
multidisciplinary
Myocardium - metabolism
Oxidase
Oxygen - chemistry
Proteins
Proton Pumps - metabolism
Protons
Science
Science (multidisciplinary)
Translocation
title Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20transmembrane%20charge%20transfer%20in%20cytochrome%20c%20oxidase%20by%20the%20membrane%20potential&rft.jtitle=Nature%20communications&rft.au=Bj%C3%B6rck,%20Markus%20L.&rft.date=2018-08-09&rft.volume=9&rft.issue=1&rft.spage=3187&rft.epage=8&rft.pages=3187-8&rft.artnum=3187&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-05615-5&rft_dat=%3Cproquest_doaj_%3E2087590604%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086245334&rft_id=info:pmid/30093670&rfr_iscdi=true