Loading…
Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential
The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane cha...
Saved in:
Published in: | Nature communications 2018-08, Vol.9 (1), p.3187-8, Article 3187 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973 |
---|---|
cites | cdi_FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 3187 |
container_title | Nature communications |
container_volume | 9 |
creator | Björck, Markus L. Brzezinski, Peter |
description | The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane charge transfer. Here, we investigate this feedback mechanism in cytochrome
c
oxidase in intact inner mitochondrial membranes upon generation of an electrochemical potential by hydrolysis of ATP. The data indicate that a reaction step that involves proton uptake to the catalytic site and presumably proton translocation is impaired by the potential, but electron transfer is not affected. These results define the order of electron and proton-transfer reactions and suggest that the proton pump is regulated by the transmembrane electrochemical gradient through control of internal proton transfer rather than by control of electron transfer.
Cytochrome
c
oxidase (Cyt
c
O) is the last enzyme of the electron transport chain, but how the electrochemical membrane potential affects Cyt
c
O is unclear. Here the authors show that proton uptake to the catalytic site of Cyt
c
O and presumably proton translocation was impaired by the potential, but electron transfer was not affected. |
doi_str_mv | 10.1038/s41467-018-05615-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4bcba95d2864bbaaa90dae138690215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4bcba95d2864bbaaa90dae138690215</doaj_id><sourcerecordid>2087590604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973</originalsourceid><addsrcrecordid>eNp9kk2P0zAQhiMEYlfL_gEOKBIXDgRmYsexL0ir8rXSSlyAAxfLccZtqiQudgr03-M2pWw54MtYM8-89ozeLHuK8AqBydeRIxd1ASgLqARWRfUguyyBY4F1yR7eu19k1zGuIR2mUHL-OLtgAIqJGi6zbws_TsH3uXf5FMwYBxqaFCm3KxOWNCcdhbwbc7ubvF0FP6Rq7n91rYmUN7t8WlF-6tv4icapM_2T7JEzfaTrY7zKvrx_93nxsbj79OF2cXNXWMHZVJCUVjmJqiXpTEslglKNc3UN6IhVLWOmdsTRIJfIjGQtQGNk5RjjStXsKruddVtv1noTusGEnfam04eED0ttwtTZnrTjjW2MqtpSCt40xhgFrSFkUigosUpaL2et-JM22-ZM7W339eagFrcaBSCKhL-Z8cQO1No0eDD9Wdd5ZexWeul_aAGyYqVMAi-OAsF_31Kc9NBFS32fNum3UZcg60qBAJ7Q5_-ga78NY9rsnhIlr9I-ElXOlA0-xkDu9BkEvTeOno2jk3H0wTh6P_Wz-2OcWv7YJAHsuJZUGpcU_r79H9nfEFbPCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086245334</pqid></control><display><type>article</type><title>Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Björck, Markus L. ; Brzezinski, Peter</creator><creatorcontrib>Björck, Markus L. ; Brzezinski, Peter</creatorcontrib><description>The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane charge transfer. Here, we investigate this feedback mechanism in cytochrome
c
oxidase in intact inner mitochondrial membranes upon generation of an electrochemical potential by hydrolysis of ATP. The data indicate that a reaction step that involves proton uptake to the catalytic site and presumably proton translocation is impaired by the potential, but electron transfer is not affected. These results define the order of electron and proton-transfer reactions and suggest that the proton pump is regulated by the transmembrane electrochemical gradient through control of internal proton transfer rather than by control of electron transfer.
Cytochrome
c
oxidase (Cyt
c
O) is the last enzyme of the electron transport chain, but how the electrochemical membrane potential affects Cyt
c
O is unclear. Here the authors show that proton uptake to the catalytic site of Cyt
c
O and presumably proton translocation was impaired by the potential, but electron transfer was not affected.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-05615-5</identifier><identifier>PMID: 30093670</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/173 ; 631/45/49/1140 ; 631/45/49/1141 ; 631/45/49/1142 ; 631/57/1464 ; Adenosine Triphosphate - chemistry ; Animals ; Biochemistry ; biokemi ; Catalysis ; Catalytic Domain ; Cattle ; Charge transfer ; Chemical reactions ; Cytochrome ; Cytochrome-c oxidase ; Cytochromes ; Electrochemical potential ; Electrochemistry ; Electron transfer ; Electron Transport ; Electron Transport Complex IV - metabolism ; Electrons ; Humanities and Social Sciences ; Hydrogen-Ion Concentration ; Hydrolysis ; Ion Transport ; Membrane potential ; Membrane Potential, Mitochondrial ; Membranes ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitochondrial Membranes - metabolism ; multidisciplinary ; Myocardium - metabolism ; Oxidase ; Oxygen - chemistry ; Proteins ; Proton Pumps - metabolism ; Protons ; Science ; Science (multidisciplinary) ; Translocation</subject><ispartof>Nature communications, 2018-08, Vol.9 (1), p.3187-8, Article 3187</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973</citedby><cites>FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2086245334/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2086245334?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30093670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-160116$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Björck, Markus L.</creatorcontrib><creatorcontrib>Brzezinski, Peter</creatorcontrib><title>Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane charge transfer. Here, we investigate this feedback mechanism in cytochrome
c
oxidase in intact inner mitochondrial membranes upon generation of an electrochemical potential by hydrolysis of ATP. The data indicate that a reaction step that involves proton uptake to the catalytic site and presumably proton translocation is impaired by the potential, but electron transfer is not affected. These results define the order of electron and proton-transfer reactions and suggest that the proton pump is regulated by the transmembrane electrochemical gradient through control of internal proton transfer rather than by control of electron transfer.
Cytochrome
c
oxidase (Cyt
c
O) is the last enzyme of the electron transport chain, but how the electrochemical membrane potential affects Cyt
c
O is unclear. Here the authors show that proton uptake to the catalytic site of Cyt
c
O and presumably proton translocation was impaired by the potential, but electron transfer was not affected.</description><subject>631/45/173</subject><subject>631/45/49/1140</subject><subject>631/45/49/1141</subject><subject>631/45/49/1142</subject><subject>631/57/1464</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>biokemi</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cattle</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Cytochrome</subject><subject>Cytochrome-c oxidase</subject><subject>Cytochromes</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Ion Transport</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>multidisciplinary</subject><subject>Myocardium - metabolism</subject><subject>Oxidase</subject><subject>Oxygen - chemistry</subject><subject>Proteins</subject><subject>Proton Pumps - metabolism</subject><subject>Protons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Translocation</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk2P0zAQhiMEYlfL_gEOKBIXDgRmYsexL0ir8rXSSlyAAxfLccZtqiQudgr03-M2pWw54MtYM8-89ozeLHuK8AqBydeRIxd1ASgLqARWRfUguyyBY4F1yR7eu19k1zGuIR2mUHL-OLtgAIqJGi6zbws_TsH3uXf5FMwYBxqaFCm3KxOWNCcdhbwbc7ubvF0FP6Rq7n91rYmUN7t8WlF-6tv4icapM_2T7JEzfaTrY7zKvrx_93nxsbj79OF2cXNXWMHZVJCUVjmJqiXpTEslglKNc3UN6IhVLWOmdsTRIJfIjGQtQGNk5RjjStXsKruddVtv1noTusGEnfam04eED0ttwtTZnrTjjW2MqtpSCt40xhgFrSFkUigosUpaL2et-JM22-ZM7W339eagFrcaBSCKhL-Z8cQO1No0eDD9Wdd5ZexWeul_aAGyYqVMAi-OAsF_31Kc9NBFS32fNum3UZcg60qBAJ7Q5_-ga78NY9rsnhIlr9I-ElXOlA0-xkDu9BkEvTeOno2jk3H0wTh6P_Wz-2OcWv7YJAHsuJZUGpcU_r79H9nfEFbPCA</recordid><startdate>20180809</startdate><enddate>20180809</enddate><creator>Björck, Markus L.</creator><creator>Brzezinski, Peter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20180809</creationdate><title>Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential</title><author>Björck, Markus L. ; Brzezinski, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/45/173</topic><topic>631/45/49/1140</topic><topic>631/45/49/1141</topic><topic>631/45/49/1142</topic><topic>631/57/1464</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>biokemi</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cattle</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Cytochrome</topic><topic>Cytochrome-c oxidase</topic><topic>Cytochromes</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Ion Transport</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>multidisciplinary</topic><topic>Myocardium - metabolism</topic><topic>Oxidase</topic><topic>Oxygen - chemistry</topic><topic>Proteins</topic><topic>Proton Pumps - metabolism</topic><topic>Protons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Björck, Markus L.</creatorcontrib><creatorcontrib>Brzezinski, Peter</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Björck, Markus L.</au><au>Brzezinski, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-08-09</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>3187</spage><epage>8</epage><pages>3187-8</pages><artnum>3187</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The respiratory chain in mitochondria is composed of membrane-bound proteins that couple electron transfer to proton translocation across the inner membrane. These charge-transfer reactions are regulated by the proton electrochemical gradient that is generated and maintained by the transmembrane charge transfer. Here, we investigate this feedback mechanism in cytochrome
c
oxidase in intact inner mitochondrial membranes upon generation of an electrochemical potential by hydrolysis of ATP. The data indicate that a reaction step that involves proton uptake to the catalytic site and presumably proton translocation is impaired by the potential, but electron transfer is not affected. These results define the order of electron and proton-transfer reactions and suggest that the proton pump is regulated by the transmembrane electrochemical gradient through control of internal proton transfer rather than by control of electron transfer.
Cytochrome
c
oxidase (Cyt
c
O) is the last enzyme of the electron transport chain, but how the electrochemical membrane potential affects Cyt
c
O is unclear. Here the authors show that proton uptake to the catalytic site of Cyt
c
O and presumably proton translocation was impaired by the potential, but electron transfer was not affected.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30093670</pmid><doi>10.1038/s41467-018-05615-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-08, Vol.9 (1), p.3187-8, Article 3187 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f4bcba95d2864bbaaa90dae138690215 |
source | Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/45/173 631/45/49/1140 631/45/49/1141 631/45/49/1142 631/57/1464 Adenosine Triphosphate - chemistry Animals Biochemistry biokemi Catalysis Catalytic Domain Cattle Charge transfer Chemical reactions Cytochrome Cytochrome-c oxidase Cytochromes Electrochemical potential Electrochemistry Electron transfer Electron Transport Electron Transport Complex IV - metabolism Electrons Humanities and Social Sciences Hydrogen-Ion Concentration Hydrolysis Ion Transport Membrane potential Membrane Potential, Mitochondrial Membranes Mitochondria Mitochondria - metabolism Mitochondrial DNA Mitochondrial Membranes - metabolism multidisciplinary Myocardium - metabolism Oxidase Oxygen - chemistry Proteins Proton Pumps - metabolism Protons Science Science (multidisciplinary) Translocation |
title | Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20transmembrane%20charge%20transfer%20in%20cytochrome%20c%20oxidase%20by%20the%20membrane%20potential&rft.jtitle=Nature%20communications&rft.au=Bj%C3%B6rck,%20Markus%20L.&rft.date=2018-08-09&rft.volume=9&rft.issue=1&rft.spage=3187&rft.epage=8&rft.pages=3187-8&rft.artnum=3187&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-05615-5&rft_dat=%3Cproquest_doaj_%3E2087590604%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c643t-e88c9f819de8fade21099bff7701fe35d33a7fe41a14813a83d00ba85f3349973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086245334&rft_id=info:pmid/30093670&rfr_iscdi=true |