Loading…

HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR

This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data fr...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS annals of the photogrammetry, remote sensing and spatial information sciences remote sensing and spatial information sciences, 2020-08, Vol.V-2-2020, p.757-763
Main Authors: Lamsters, K., Karušs, J., Krievāns, M., Ješkins, J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3
cites
container_end_page 763
container_issue
container_start_page 757
container_title ISPRS annals of the photogrammetry, remote sensing and spatial information sciences
container_volume V-2-2020
creator Lamsters, K.
Karušs, J.
Krievāns, M.
Ješkins, J.
description This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data from GPR data allowed the generation of high precision subglacial topography model. We report uncertainties arising from GPR, GPS, and DEM suggesting sufficient accuracy for the reconstruction of glacier bed topography. GPR data and generated subglacial topography model does not reveal any possible Nye channel that could be incised into the bedrock, however, we were able to detect englacial tunnel that runs approximately parallel to the ice margin and possibly is a remnant of a tunnel that provided passage for ice-dammed lake waters during the latest jökulhlaups (2007, 2008). We also observe a radar-transparent layer up to 20 m from the glacier surface suggesting the boundary of cold/temperate ice or piezometric surface. The latter one is preferred due to the warm climatic conditions which are supposed to warm up possible winter cold wave.
doi_str_mv 10.5194/isprs-annals-V-2-2020-757-2020
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4c2d8285df442ef96d60b5f506c4a4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4c2d8285df442ef96d60b5f506c4a4e</doaj_id><sourcerecordid>2429598519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxYMoWNTvsCCIHlb3b5K9CLGmaSA2IWkqnpZNdiMt1dSNHvz2blMRT_MY3rwZ5ud5VxjdcizY3XrY2QGq93e1HeAKEkgQQTDgwSiOvAlxLigQR8f_9Kl3MQwbhBAOuBCCTLxuniZzWMZVntXLNF-Aqi5n0TQG0eIRPMSPYJkXeVJGxfwFPEVFkS4SkM9AWVdVnGUgyaJpGpfgunoGSRnHi8zN3YC62vvqaDXGJEV57p107lJz8VvPvHoWL6dzmOVJOo0y2FLqI2goo40KKTaNjxXy28BQTGljkGatIBypNtSBRthoQhnjOlSNID52smVaN_TMSw-5ulcbubPrN2W_Za_Wcmz09lUq-7lut0Z2rCU6JCHXHWPEdMLXPmp4x91apphxWZeHrJ3tP77M8Ck3_ZfdP1wSRgQXoSPhXPcHV2v7YbCm-9uKkdyjkiMqeUAlV5LIPSHpUI2C_gDS3IH8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429598519</pqid></control><display><type>article</type><title>HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR</title><source>Publicly Available Content (ProQuest)</source><creator>Lamsters, K. ; Karušs, J. ; Krievāns, M. ; Ješkins, J.</creator><creatorcontrib>Lamsters, K. ; Karušs, J. ; Krievāns, M. ; Ješkins, J.</creatorcontrib><description>This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data from GPR data allowed the generation of high precision subglacial topography model. We report uncertainties arising from GPR, GPS, and DEM suggesting sufficient accuracy for the reconstruction of glacier bed topography. GPR data and generated subglacial topography model does not reveal any possible Nye channel that could be incised into the bedrock, however, we were able to detect englacial tunnel that runs approximately parallel to the ice margin and possibly is a remnant of a tunnel that provided passage for ice-dammed lake waters during the latest jökulhlaups (2007, 2008). We also observe a radar-transparent layer up to 20 m from the glacier surface suggesting the boundary of cold/temperate ice or piezometric surface. The latter one is preferred due to the warm climatic conditions which are supposed to warm up possible winter cold wave.</description><identifier>ISSN: 2194-9050</identifier><identifier>ISSN: 2194-9042</identifier><identifier>EISSN: 2194-9050</identifier><identifier>DOI: 10.5194/isprs-annals-V-2-2020-757-2020</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Aerial photography ; Bedrock ; Climatic conditions ; Digital Elevation Models ; Glaciers ; Ground penetrating radar ; Ice cover ; Ice thickness ; Mapping ; Photogrammetry ; Radar ; Topography ; Unmanned aerial vehicles</subject><ispartof>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2020-08, Vol.V-2-2020, p.757-763</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429598519?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Lamsters, K.</creatorcontrib><creatorcontrib>Karušs, J.</creatorcontrib><creatorcontrib>Krievāns, M.</creatorcontrib><creatorcontrib>Ješkins, J.</creatorcontrib><title>HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR</title><title>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</title><description>This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data from GPR data allowed the generation of high precision subglacial topography model. We report uncertainties arising from GPR, GPS, and DEM suggesting sufficient accuracy for the reconstruction of glacier bed topography. GPR data and generated subglacial topography model does not reveal any possible Nye channel that could be incised into the bedrock, however, we were able to detect englacial tunnel that runs approximately parallel to the ice margin and possibly is a remnant of a tunnel that provided passage for ice-dammed lake waters during the latest jökulhlaups (2007, 2008). We also observe a radar-transparent layer up to 20 m from the glacier surface suggesting the boundary of cold/temperate ice or piezometric surface. The latter one is preferred due to the warm climatic conditions which are supposed to warm up possible winter cold wave.</description><subject>Aerial photography</subject><subject>Bedrock</subject><subject>Climatic conditions</subject><subject>Digital Elevation Models</subject><subject>Glaciers</subject><subject>Ground penetrating radar</subject><subject>Ice cover</subject><subject>Ice thickness</subject><subject>Mapping</subject><subject>Photogrammetry</subject><subject>Radar</subject><subject>Topography</subject><subject>Unmanned aerial vehicles</subject><issn>2194-9050</issn><issn>2194-9042</issn><issn>2194-9050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxYMoWNTvsCCIHlb3b5K9CLGmaSA2IWkqnpZNdiMt1dSNHvz2blMRT_MY3rwZ5ud5VxjdcizY3XrY2QGq93e1HeAKEkgQQTDgwSiOvAlxLigQR8f_9Kl3MQwbhBAOuBCCTLxuniZzWMZVntXLNF-Aqi5n0TQG0eIRPMSPYJkXeVJGxfwFPEVFkS4SkM9AWVdVnGUgyaJpGpfgunoGSRnHi8zN3YC62vvqaDXGJEV57p107lJz8VvPvHoWL6dzmOVJOo0y2FLqI2goo40KKTaNjxXy28BQTGljkGatIBypNtSBRthoQhnjOlSNID52smVaN_TMSw-5ulcbubPrN2W_Za_Wcmz09lUq-7lut0Z2rCU6JCHXHWPEdMLXPmp4x91apphxWZeHrJ3tP77M8Ck3_ZfdP1wSRgQXoSPhXPcHV2v7YbCm-9uKkdyjkiMqeUAlV5LIPSHpUI2C_gDS3IH8</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Lamsters, K.</creator><creator>Karušs, J.</creator><creator>Krievāns, M.</creator><creator>Ješkins, J.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20200803</creationdate><title>HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR</title><author>Lamsters, K. ; Karušs, J. ; Krievāns, M. ; Ješkins, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerial photography</topic><topic>Bedrock</topic><topic>Climatic conditions</topic><topic>Digital Elevation Models</topic><topic>Glaciers</topic><topic>Ground penetrating radar</topic><topic>Ice cover</topic><topic>Ice thickness</topic><topic>Mapping</topic><topic>Photogrammetry</topic><topic>Radar</topic><topic>Topography</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamsters, K.</creatorcontrib><creatorcontrib>Karušs, J.</creatorcontrib><creatorcontrib>Krievāns, M.</creatorcontrib><creatorcontrib>Ješkins, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamsters, K.</au><au>Karušs, J.</au><au>Krievāns, M.</au><au>Ješkins, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR</atitle><jtitle>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</jtitle><date>2020-08-03</date><risdate>2020</risdate><volume>V-2-2020</volume><spage>757</spage><epage>763</epage><pages>757-763</pages><issn>2194-9050</issn><issn>2194-9042</issn><eissn>2194-9050</eissn><abstract>This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data from GPR data allowed the generation of high precision subglacial topography model. We report uncertainties arising from GPR, GPS, and DEM suggesting sufficient accuracy for the reconstruction of glacier bed topography. GPR data and generated subglacial topography model does not reveal any possible Nye channel that could be incised into the bedrock, however, we were able to detect englacial tunnel that runs approximately parallel to the ice margin and possibly is a remnant of a tunnel that provided passage for ice-dammed lake waters during the latest jökulhlaups (2007, 2008). We also observe a radar-transparent layer up to 20 m from the glacier surface suggesting the boundary of cold/temperate ice or piezometric surface. The latter one is preferred due to the warm climatic conditions which are supposed to warm up possible winter cold wave.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-annals-V-2-2020-757-2020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9050
ispartof ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2020-08, Vol.V-2-2020, p.757-763
issn 2194-9050
2194-9042
2194-9050
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f4c2d8285df442ef96d60b5f506c4a4e
source Publicly Available Content (ProQuest)
subjects Aerial photography
Bedrock
Climatic conditions
Digital Elevation Models
Glaciers
Ground penetrating radar
Ice cover
Ice thickness
Mapping
Photogrammetry
Radar
Topography
Unmanned aerial vehicles
title HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIGH-RESOLUTION%20SURFACE%20AND%20BED%20TOPOGRAPHY%20MAPPING%20OF%20RUSSELL%20GLACIER%20(SW%20GREENLAND)%20USING%20UAV%20AND%20GPR&rft.jtitle=ISPRS%20annals%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences&rft.au=Lamsters,%20K.&rft.date=2020-08-03&rft.volume=V-2-2020&rft.spage=757&rft.epage=763&rft.pages=757-763&rft.issn=2194-9050&rft.eissn=2194-9050&rft_id=info:doi/10.5194/isprs-annals-V-2-2020-757-2020&rft_dat=%3Cproquest_doaj_%3E2429598519%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429598519&rft_id=info:pmid/&rfr_iscdi=true