Loading…
HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR
This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data fr...
Saved in:
Published in: | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences remote sensing and spatial information sciences, 2020-08, Vol.V-2-2020, p.757-763 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3 |
---|---|
cites | |
container_end_page | 763 |
container_issue | |
container_start_page | 757 |
container_title | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
container_volume | V-2-2020 |
creator | Lamsters, K. Karušs, J. Krievāns, M. Ješkins, J. |
description | This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data from GPR data allowed the generation of high precision subglacial topography model. We report uncertainties arising from GPR, GPS, and DEM suggesting sufficient accuracy for the reconstruction of glacier bed topography. GPR data and generated subglacial topography model does not reveal any possible Nye channel that could be incised into the bedrock, however, we were able to detect englacial tunnel that runs approximately parallel to the ice margin and possibly is a remnant of a tunnel that provided passage for ice-dammed lake waters during the latest jökulhlaups (2007, 2008). We also observe a radar-transparent layer up to 20 m from the glacier surface suggesting the boundary of cold/temperate ice or piezometric surface. The latter one is preferred due to the warm climatic conditions which are supposed to warm up possible winter cold wave. |
doi_str_mv | 10.5194/isprs-annals-V-2-2020-757-2020 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4c2d8285df442ef96d60b5f506c4a4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4c2d8285df442ef96d60b5f506c4a4e</doaj_id><sourcerecordid>2429598519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxYMoWNTvsCCIHlb3b5K9CLGmaSA2IWkqnpZNdiMt1dSNHvz2blMRT_MY3rwZ5ud5VxjdcizY3XrY2QGq93e1HeAKEkgQQTDgwSiOvAlxLigQR8f_9Kl3MQwbhBAOuBCCTLxuniZzWMZVntXLNF-Aqi5n0TQG0eIRPMSPYJkXeVJGxfwFPEVFkS4SkM9AWVdVnGUgyaJpGpfgunoGSRnHi8zN3YC62vvqaDXGJEV57p107lJz8VvPvHoWL6dzmOVJOo0y2FLqI2goo40KKTaNjxXy28BQTGljkGatIBypNtSBRthoQhnjOlSNID52smVaN_TMSw-5ulcbubPrN2W_Za_Wcmz09lUq-7lut0Z2rCU6JCHXHWPEdMLXPmp4x91apphxWZeHrJ3tP77M8Ck3_ZfdP1wSRgQXoSPhXPcHV2v7YbCm-9uKkdyjkiMqeUAlV5LIPSHpUI2C_gDS3IH8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429598519</pqid></control><display><type>article</type><title>HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR</title><source>Publicly Available Content (ProQuest)</source><creator>Lamsters, K. ; Karušs, J. ; Krievāns, M. ; Ješkins, J.</creator><creatorcontrib>Lamsters, K. ; Karušs, J. ; Krievāns, M. ; Ješkins, J.</creatorcontrib><description>This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data from GPR data allowed the generation of high precision subglacial topography model. We report uncertainties arising from GPR, GPS, and DEM suggesting sufficient accuracy for the reconstruction of glacier bed topography. GPR data and generated subglacial topography model does not reveal any possible Nye channel that could be incised into the bedrock, however, we were able to detect englacial tunnel that runs approximately parallel to the ice margin and possibly is a remnant of a tunnel that provided passage for ice-dammed lake waters during the latest jökulhlaups (2007, 2008). We also observe a radar-transparent layer up to 20 m from the glacier surface suggesting the boundary of cold/temperate ice or piezometric surface. The latter one is preferred due to the warm climatic conditions which are supposed to warm up possible winter cold wave.</description><identifier>ISSN: 2194-9050</identifier><identifier>ISSN: 2194-9042</identifier><identifier>EISSN: 2194-9050</identifier><identifier>DOI: 10.5194/isprs-annals-V-2-2020-757-2020</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Aerial photography ; Bedrock ; Climatic conditions ; Digital Elevation Models ; Glaciers ; Ground penetrating radar ; Ice cover ; Ice thickness ; Mapping ; Photogrammetry ; Radar ; Topography ; Unmanned aerial vehicles</subject><ispartof>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2020-08, Vol.V-2-2020, p.757-763</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2429598519?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Lamsters, K.</creatorcontrib><creatorcontrib>Karušs, J.</creatorcontrib><creatorcontrib>Krievāns, M.</creatorcontrib><creatorcontrib>Ješkins, J.</creatorcontrib><title>HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR</title><title>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</title><description>This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data from GPR data allowed the generation of high precision subglacial topography model. We report uncertainties arising from GPR, GPS, and DEM suggesting sufficient accuracy for the reconstruction of glacier bed topography. GPR data and generated subglacial topography model does not reveal any possible Nye channel that could be incised into the bedrock, however, we were able to detect englacial tunnel that runs approximately parallel to the ice margin and possibly is a remnant of a tunnel that provided passage for ice-dammed lake waters during the latest jökulhlaups (2007, 2008). We also observe a radar-transparent layer up to 20 m from the glacier surface suggesting the boundary of cold/temperate ice or piezometric surface. The latter one is preferred due to the warm climatic conditions which are supposed to warm up possible winter cold wave.</description><subject>Aerial photography</subject><subject>Bedrock</subject><subject>Climatic conditions</subject><subject>Digital Elevation Models</subject><subject>Glaciers</subject><subject>Ground penetrating radar</subject><subject>Ice cover</subject><subject>Ice thickness</subject><subject>Mapping</subject><subject>Photogrammetry</subject><subject>Radar</subject><subject>Topography</subject><subject>Unmanned aerial vehicles</subject><issn>2194-9050</issn><issn>2194-9042</issn><issn>2194-9050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxYMoWNTvsCCIHlb3b5K9CLGmaSA2IWkqnpZNdiMt1dSNHvz2blMRT_MY3rwZ5ud5VxjdcizY3XrY2QGq93e1HeAKEkgQQTDgwSiOvAlxLigQR8f_9Kl3MQwbhBAOuBCCTLxuniZzWMZVntXLNF-Aqi5n0TQG0eIRPMSPYJkXeVJGxfwFPEVFkS4SkM9AWVdVnGUgyaJpGpfgunoGSRnHi8zN3YC62vvqaDXGJEV57p107lJz8VvPvHoWL6dzmOVJOo0y2FLqI2goo40KKTaNjxXy28BQTGljkGatIBypNtSBRthoQhnjOlSNID52smVaN_TMSw-5ulcbubPrN2W_Za_Wcmz09lUq-7lut0Z2rCU6JCHXHWPEdMLXPmp4x91apphxWZeHrJ3tP77M8Ck3_ZfdP1wSRgQXoSPhXPcHV2v7YbCm-9uKkdyjkiMqeUAlV5LIPSHpUI2C_gDS3IH8</recordid><startdate>20200803</startdate><enddate>20200803</enddate><creator>Lamsters, K.</creator><creator>Karušs, J.</creator><creator>Krievāns, M.</creator><creator>Ješkins, J.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20200803</creationdate><title>HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR</title><author>Lamsters, K. ; Karušs, J. ; Krievāns, M. ; Ješkins, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerial photography</topic><topic>Bedrock</topic><topic>Climatic conditions</topic><topic>Digital Elevation Models</topic><topic>Glaciers</topic><topic>Ground penetrating radar</topic><topic>Ice cover</topic><topic>Ice thickness</topic><topic>Mapping</topic><topic>Photogrammetry</topic><topic>Radar</topic><topic>Topography</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamsters, K.</creatorcontrib><creatorcontrib>Karušs, J.</creatorcontrib><creatorcontrib>Krievāns, M.</creatorcontrib><creatorcontrib>Ješkins, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamsters, K.</au><au>Karušs, J.</au><au>Krievāns, M.</au><au>Ješkins, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR</atitle><jtitle>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</jtitle><date>2020-08-03</date><risdate>2020</risdate><volume>V-2-2020</volume><spage>757</spage><epage>763</epage><pages>757-763</pages><issn>2194-9050</issn><issn>2194-9042</issn><eissn>2194-9050</eissn><abstract>This study presents the detailed survey of the northern marginal part of Russell Glacier, SW Greenland using the combination of unmanned aerial vehicle (UAV) photogrammetry and low-frequency ground penetrating radar (GPR) measurements. Obtained digital elevation model (DEM) and ice thickness data from GPR data allowed the generation of high precision subglacial topography model. We report uncertainties arising from GPR, GPS, and DEM suggesting sufficient accuracy for the reconstruction of glacier bed topography. GPR data and generated subglacial topography model does not reveal any possible Nye channel that could be incised into the bedrock, however, we were able to detect englacial tunnel that runs approximately parallel to the ice margin and possibly is a remnant of a tunnel that provided passage for ice-dammed lake waters during the latest jökulhlaups (2007, 2008). We also observe a radar-transparent layer up to 20 m from the glacier surface suggesting the boundary of cold/temperate ice or piezometric surface. The latter one is preferred due to the warm climatic conditions which are supposed to warm up possible winter cold wave.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-annals-V-2-2020-757-2020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9050 |
ispartof | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2020-08, Vol.V-2-2020, p.757-763 |
issn | 2194-9050 2194-9042 2194-9050 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f4c2d8285df442ef96d60b5f506c4a4e |
source | Publicly Available Content (ProQuest) |
subjects | Aerial photography Bedrock Climatic conditions Digital Elevation Models Glaciers Ground penetrating radar Ice cover Ice thickness Mapping Photogrammetry Radar Topography Unmanned aerial vehicles |
title | HIGH-RESOLUTION SURFACE AND BED TOPOGRAPHY MAPPING OF RUSSELL GLACIER (SW GREENLAND) USING UAV AND GPR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIGH-RESOLUTION%20SURFACE%20AND%20BED%20TOPOGRAPHY%20MAPPING%20OF%20RUSSELL%20GLACIER%20(SW%20GREENLAND)%20USING%20UAV%20AND%20GPR&rft.jtitle=ISPRS%20annals%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences&rft.au=Lamsters,%20K.&rft.date=2020-08-03&rft.volume=V-2-2020&rft.spage=757&rft.epage=763&rft.pages=757-763&rft.issn=2194-9050&rft.eissn=2194-9050&rft_id=info:doi/10.5194/isprs-annals-V-2-2020-757-2020&rft_dat=%3Cproquest_doaj_%3E2429598519%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3360-e343ba831eb61a06c7e3133be0d4c9250ac8d7d01ed23445d8ab9261445c4ddb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429598519&rft_id=info:pmid/&rfr_iscdi=true |