Loading…
Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production
Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the m...
Saved in:
Published in: | Marine drugs 2014-01, Vol.12 (2), p.779-798 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c605t-f7e774f7ebb7afba5e45e928f335c968f0f942519a8aca7e70a982b19d6b42d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c605t-f7e774f7ebb7afba5e45e928f335c968f0f942519a8aca7e70a982b19d6b42d93 |
container_end_page | 798 |
container_issue | 2 |
container_start_page | 779 |
container_title | Marine drugs |
container_volume | 12 |
creator | Ballot, Caroline Martoriati, Alain Jendoubi, Manel Buche, Sébastien Formstecher, Pierre Mortier, Laurent Kluza, Jérome Marchetti, Philippe |
description | Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic effect have not yet been characterized. Here, we demonstrated that induction of cellular senescence (depicted by cell cycle arrest in G2 associated with β-galactosidase activity) is a common response to subtoxic concentrations of LamD. Cellular senescence is observed in a large panel of cancer cells following in vitro or in vivo exposure to LamD. The onset of cellular senescence is dependent on the presence of intact topoisomerase I since topoisomerase I-mutated cells are resistant to senescence induced by LamD. LamD-induced senescence occurs without important loss of telomere integrity. Instead, incubation with LamD results in the production of intracellular reactive oxygen species (ROS), which are critical for senescence as demonstrated by the inhibitory effect of antioxidants. In addition, cancer cells lacking mitochondrial DNA also exhibit cellular senescence upon LamD exposure indicating that LamD can trigger senescence, unlike apoptosis, in the absence of functional mitochondria. Overall, our results identify senescence-associated growth arrest as a powerful effect of LamD and add compelling evidence for the pharmacological interest of lamellarins as potential anticancer agents. |
doi_str_mv | 10.3390/md12020779 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f4ee8462c2734a6cbe222f7926f31607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4ee8462c2734a6cbe222f7926f31607</doaj_id><sourcerecordid>3337098641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-f7e774f7ebb7afba5e45e928f335c968f0f942519a8aca7e70a982b19d6b42d93</originalsourceid><addsrcrecordid>eNqFks2O0zAQgCMEYpeFCw-AInEBpIL_HXNAqpafrVQJCcHZchy7dZXYxU5W4nF4Uya0W3b3wiVOZj5_E4-nqp5j9JZShd4NHSaIICnVg-ocC4EWEJYPb72fVU9K2SFEeaPY4-qMMCYplvy8-r2Mady6XHtj3ViPqYav2sQxWBMtxLMr-xSLm1O9GVzfmxxi_fF9HWI32TGkWCdfW0hMkKqLi65YB3vBlNO02QK4DW24Ice0T6GkwWUD1hXU6oAYszkpvqVS73M62p9Wj7zpi3t2XC-qH58_fb-8Wqy_flldLtcLKxAfF146KRk821Ya3xruGHeKNJ5SbpVoPPKKEY6VaYw1ACOjGtJi1YmWkU7Ri2p18HbJ7PQ-h8HkXzqZoP8GUt5ok6EtvdOeOdcwQSyRlBlhW0cI8VIR4SkWSILrw8G1n9rBddAOOF9_R3o3E8NWb9K1pooxjjkIXh8E23vbrpZrPccQFJKNlNcY2FfHYjn9nFwZ9RDK3EwTXZqKxpwzxShrmv-jTBGJCSbzEV7eQ3dpyhFuAIRUKEwEY0C9OVA2p1Ky86efxUjPw6n_DSfAL2535YTeTCP9A5js4aQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1536912644</pqid></control><display><type>article</type><title>Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Ballot, Caroline ; Martoriati, Alain ; Jendoubi, Manel ; Buche, Sébastien ; Formstecher, Pierre ; Mortier, Laurent ; Kluza, Jérome ; Marchetti, Philippe</creator><creatorcontrib>Ballot, Caroline ; Martoriati, Alain ; Jendoubi, Manel ; Buche, Sébastien ; Formstecher, Pierre ; Mortier, Laurent ; Kluza, Jérome ; Marchetti, Philippe</creatorcontrib><description>Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic effect have not yet been characterized. Here, we demonstrated that induction of cellular senescence (depicted by cell cycle arrest in G2 associated with β-galactosidase activity) is a common response to subtoxic concentrations of LamD. Cellular senescence is observed in a large panel of cancer cells following in vitro or in vivo exposure to LamD. The onset of cellular senescence is dependent on the presence of intact topoisomerase I since topoisomerase I-mutated cells are resistant to senescence induced by LamD. LamD-induced senescence occurs without important loss of telomere integrity. Instead, incubation with LamD results in the production of intracellular reactive oxygen species (ROS), which are critical for senescence as demonstrated by the inhibitory effect of antioxidants. In addition, cancer cells lacking mitochondrial DNA also exhibit cellular senescence upon LamD exposure indicating that LamD can trigger senescence, unlike apoptosis, in the absence of functional mitochondria. Overall, our results identify senescence-associated growth arrest as a powerful effect of LamD and add compelling evidence for the pharmacological interest of lamellarins as potential anticancer agents.</description><identifier>ISSN: 1660-3397</identifier><identifier>EISSN: 1660-3397</identifier><identifier>DOI: 10.3390/md12020779</identifier><identifier>PMID: 24473175</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Cancer ; Cell Line, Tumor ; cellular senescence ; Cellular Senescence - drug effects ; Coumarins - pharmacology ; DNA damage ; DNA Topoisomerases, Type I - drug effects ; DNA Topoisomerases, Type I - metabolism ; DNA, Mitochondrial - metabolism ; Female ; G2 Phase Cell Cycle Checkpoints - drug effects ; Heterocyclic Compounds, 4 or More Rings - pharmacology ; Humans ; Isoquinolines - pharmacology ; Life Sciences ; Marine ; Mice, SCID ; mitochondria ; Mitochondria - drug effects ; Neoplasms - drug therapy ; Neoplasms - pathology ; oxidative stress response ; Pharmaceutical sciences ; Pharmacology ; Reactive Oxygen Species - metabolism ; Telomere - metabolism ; Topoisomerase Inhibitors - pharmacology</subject><ispartof>Marine drugs, 2014-01, Vol.12 (2), p.779-798</ispartof><rights>Copyright MDPI AG 2014</rights><rights>Attribution</rights><rights>2014 by the authors; licensee MDPI, Basel, Switzerland. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-f7e774f7ebb7afba5e45e928f335c968f0f942519a8aca7e70a982b19d6b42d93</citedby><cites>FETCH-LOGICAL-c605t-f7e774f7ebb7afba5e45e928f335c968f0f942519a8aca7e70a982b19d6b42d93</cites><orcidid>0000-0002-2644-1790 ; 0000-0002-7346-1305 ; 0000-0002-4663-6800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1536912644/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1536912644?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24473175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-03167877$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballot, Caroline</creatorcontrib><creatorcontrib>Martoriati, Alain</creatorcontrib><creatorcontrib>Jendoubi, Manel</creatorcontrib><creatorcontrib>Buche, Sébastien</creatorcontrib><creatorcontrib>Formstecher, Pierre</creatorcontrib><creatorcontrib>Mortier, Laurent</creatorcontrib><creatorcontrib>Kluza, Jérome</creatorcontrib><creatorcontrib>Marchetti, Philippe</creatorcontrib><title>Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production</title><title>Marine drugs</title><addtitle>Mar Drugs</addtitle><description>Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic effect have not yet been characterized. Here, we demonstrated that induction of cellular senescence (depicted by cell cycle arrest in G2 associated with β-galactosidase activity) is a common response to subtoxic concentrations of LamD. Cellular senescence is observed in a large panel of cancer cells following in vitro or in vivo exposure to LamD. The onset of cellular senescence is dependent on the presence of intact topoisomerase I since topoisomerase I-mutated cells are resistant to senescence induced by LamD. LamD-induced senescence occurs without important loss of telomere integrity. Instead, incubation with LamD results in the production of intracellular reactive oxygen species (ROS), which are critical for senescence as demonstrated by the inhibitory effect of antioxidants. In addition, cancer cells lacking mitochondrial DNA also exhibit cellular senescence upon LamD exposure indicating that LamD can trigger senescence, unlike apoptosis, in the absence of functional mitochondria. Overall, our results identify senescence-associated growth arrest as a powerful effect of LamD and add compelling evidence for the pharmacological interest of lamellarins as potential anticancer agents.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>cellular senescence</subject><subject>Cellular Senescence - drug effects</subject><subject>Coumarins - pharmacology</subject><subject>DNA damage</subject><subject>DNA Topoisomerases, Type I - drug effects</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Female</subject><subject>G2 Phase Cell Cycle Checkpoints - drug effects</subject><subject>Heterocyclic Compounds, 4 or More Rings - pharmacology</subject><subject>Humans</subject><subject>Isoquinolines - pharmacology</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Mice, SCID</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>oxidative stress response</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Telomere - metabolism</subject><subject>Topoisomerase Inhibitors - pharmacology</subject><issn>1660-3397</issn><issn>1660-3397</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks2O0zAQgCMEYpeFCw-AInEBpIL_HXNAqpafrVQJCcHZchy7dZXYxU5W4nF4Uya0W3b3wiVOZj5_E4-nqp5j9JZShd4NHSaIICnVg-ocC4EWEJYPb72fVU9K2SFEeaPY4-qMMCYplvy8-r2Mady6XHtj3ViPqYav2sQxWBMtxLMr-xSLm1O9GVzfmxxi_fF9HWI32TGkWCdfW0hMkKqLi65YB3vBlNO02QK4DW24Ice0T6GkwWUD1hXU6oAYszkpvqVS73M62p9Wj7zpi3t2XC-qH58_fb-8Wqy_flldLtcLKxAfF146KRk821Ya3xruGHeKNJ5SbpVoPPKKEY6VaYw1ACOjGtJi1YmWkU7Ri2p18HbJ7PQ-h8HkXzqZoP8GUt5ok6EtvdOeOdcwQSyRlBlhW0cI8VIR4SkWSILrw8G1n9rBddAOOF9_R3o3E8NWb9K1pooxjjkIXh8E23vbrpZrPccQFJKNlNcY2FfHYjn9nFwZ9RDK3EwTXZqKxpwzxShrmv-jTBGJCSbzEV7eQ3dpyhFuAIRUKEwEY0C9OVA2p1Ky86efxUjPw6n_DSfAL2535YTeTCP9A5js4aQ</recordid><startdate>20140127</startdate><enddate>20140127</enddate><creator>Ballot, Caroline</creator><creator>Martoriati, Alain</creator><creator>Jendoubi, Manel</creator><creator>Buche, Sébastien</creator><creator>Formstecher, Pierre</creator><creator>Mortier, Laurent</creator><creator>Kluza, Jérome</creator><creator>Marchetti, Philippe</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TM</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2644-1790</orcidid><orcidid>https://orcid.org/0000-0002-7346-1305</orcidid><orcidid>https://orcid.org/0000-0002-4663-6800</orcidid></search><sort><creationdate>20140127</creationdate><title>Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production</title><author>Ballot, Caroline ; Martoriati, Alain ; Jendoubi, Manel ; Buche, Sébastien ; Formstecher, Pierre ; Mortier, Laurent ; Kluza, Jérome ; Marchetti, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-f7e774f7ebb7afba5e45e928f335c968f0f942519a8aca7e70a982b19d6b42d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>cellular senescence</topic><topic>Cellular Senescence - drug effects</topic><topic>Coumarins - pharmacology</topic><topic>DNA damage</topic><topic>DNA Topoisomerases, Type I - drug effects</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Female</topic><topic>G2 Phase Cell Cycle Checkpoints - drug effects</topic><topic>Heterocyclic Compounds, 4 or More Rings - pharmacology</topic><topic>Humans</topic><topic>Isoquinolines - pharmacology</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Mice, SCID</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>oxidative stress response</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Telomere - metabolism</topic><topic>Topoisomerase Inhibitors - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballot, Caroline</creatorcontrib><creatorcontrib>Martoriati, Alain</creatorcontrib><creatorcontrib>Jendoubi, Manel</creatorcontrib><creatorcontrib>Buche, Sébastien</creatorcontrib><creatorcontrib>Formstecher, Pierre</creatorcontrib><creatorcontrib>Mortier, Laurent</creatorcontrib><creatorcontrib>Kluza, Jérome</creatorcontrib><creatorcontrib>Marchetti, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Marine drugs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballot, Caroline</au><au>Martoriati, Alain</au><au>Jendoubi, Manel</au><au>Buche, Sébastien</au><au>Formstecher, Pierre</au><au>Mortier, Laurent</au><au>Kluza, Jérome</au><au>Marchetti, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production</atitle><jtitle>Marine drugs</jtitle><addtitle>Mar Drugs</addtitle><date>2014-01-27</date><risdate>2014</risdate><volume>12</volume><issue>2</issue><spage>779</spage><epage>798</epage><pages>779-798</pages><issn>1660-3397</issn><eissn>1660-3397</eissn><abstract>Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic effect have not yet been characterized. Here, we demonstrated that induction of cellular senescence (depicted by cell cycle arrest in G2 associated with β-galactosidase activity) is a common response to subtoxic concentrations of LamD. Cellular senescence is observed in a large panel of cancer cells following in vitro or in vivo exposure to LamD. The onset of cellular senescence is dependent on the presence of intact topoisomerase I since topoisomerase I-mutated cells are resistant to senescence induced by LamD. LamD-induced senescence occurs without important loss of telomere integrity. Instead, incubation with LamD results in the production of intracellular reactive oxygen species (ROS), which are critical for senescence as demonstrated by the inhibitory effect of antioxidants. In addition, cancer cells lacking mitochondrial DNA also exhibit cellular senescence upon LamD exposure indicating that LamD can trigger senescence, unlike apoptosis, in the absence of functional mitochondria. Overall, our results identify senescence-associated growth arrest as a powerful effect of LamD and add compelling evidence for the pharmacological interest of lamellarins as potential anticancer agents.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>24473175</pmid><doi>10.3390/md12020779</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2644-1790</orcidid><orcidid>https://orcid.org/0000-0002-7346-1305</orcidid><orcidid>https://orcid.org/0000-0002-4663-6800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-3397 |
ispartof | Marine drugs, 2014-01, Vol.12 (2), p.779-798 |
issn | 1660-3397 1660-3397 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f4ee8462c2734a6cbe222f7926f31607 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Animals Antineoplastic Agents - pharmacology Apoptosis - drug effects Cancer Cell Line, Tumor cellular senescence Cellular Senescence - drug effects Coumarins - pharmacology DNA damage DNA Topoisomerases, Type I - drug effects DNA Topoisomerases, Type I - metabolism DNA, Mitochondrial - metabolism Female G2 Phase Cell Cycle Checkpoints - drug effects Heterocyclic Compounds, 4 or More Rings - pharmacology Humans Isoquinolines - pharmacology Life Sciences Marine Mice, SCID mitochondria Mitochondria - drug effects Neoplasms - drug therapy Neoplasms - pathology oxidative stress response Pharmaceutical sciences Pharmacology Reactive Oxygen Species - metabolism Telomere - metabolism Topoisomerase Inhibitors - pharmacology |
title | Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Another%20facet%20to%20the%20anticancer%20response%20to%20lamellarin%20D:%20induction%20of%20cellular%20senescence%20through%20inhibition%20of%20topoisomerase%20I%20and%20intracellular%20Ros%20production&rft.jtitle=Marine%20drugs&rft.au=Ballot,%20Caroline&rft.date=2014-01-27&rft.volume=12&rft.issue=2&rft.spage=779&rft.epage=798&rft.pages=779-798&rft.issn=1660-3397&rft.eissn=1660-3397&rft_id=info:doi/10.3390/md12020779&rft_dat=%3Cproquest_doaj_%3E3337098641%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-f7e774f7ebb7afba5e45e928f335c968f0f942519a8aca7e70a982b19d6b42d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1536912644&rft_id=info:pmid/24473175&rfr_iscdi=true |