Loading…

Artificial intelligence enabled smart mask for speech recognition for future hearing devices

In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-12, Vol.14 (1), p.30112-11
Main Authors: Hameed, Hira, Lubna, Usman, Muhammad, Kazim, Jalil Ur Rehman, Assaleh, Khaled, Arshad, Kamran, Hussain, Amir, Imran, Muhammad, Abbasi, Qammer H.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 11
container_issue 1
container_start_page 30112
container_title Scientific reports
container_volume 14
creator Hameed, Hira
Lubna
Usman, Muhammad
Kazim, Jalil Ur Rehman
Assaleh, Khaled
Arshad, Kamran
Hussain, Amir
Imran, Muhammad
Abbasi, Qammer H.
description In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limitations, privacy concerns as well as wearable device discomfort for subjects and disturb their daily routines. Furthermore, in the era of coronavirus (COVID-19), where face masks are the norm, vision-based and wearable-based technologies for hearing aids are ineffective. To address the fundamental limitations of camera-based and wearable-based systems, this paper proposes a Radio Frequency Identification (RFID)-based smart mask for a Lip-reading framework capable of reading Lips under face masks, enabling effective speech recognition and fostering conversational accessibility for individuals with hearing impairment. The system uses RFID technology to make Radio Frequency (RF) sensing-based Lip-reading possible. A smart RFID face mask is used to collect a dataset containing three different classes of vowels (A, E, I, O, U), Consonants (F, G, M, S), and words (Fish, Goat, Meal, Moon, Snake). The collected data are fed into well-known machine-learning models for classification. A high classification accuracy is achieved by individual classes and combined datasets. On the RFID combined dataset, the Random Forest model achieves a high classification accuracy of 80%.
doi_str_mv 10.1038/s41598-024-81904-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5129c764bdc402991e2ad2b0cc63830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5129c764bdc402991e2ad2b0cc63830</doaj_id><sourcerecordid>3140928311</sourcerecordid><originalsourceid>FETCH-LOGICAL-d379t-919dc65a302f9359c1859591201f727e8b6db8721337c8b9691034983f4f08963</originalsourceid><addsrcrecordid>eNpdkkFr3DAQhU1paEKSP9BDMfTSi1NJI9uaUwkhbQOBXppbQMjy2KutV9pKdmD_fZXdNE2qi8To8fH09IriPWcXnIH6nCSvUVVMyEpxZLLavSlOBJN1JUCIty_Ox8V5SmuWVy1QcnxXHAM2ogVQJ8X9ZZzd4KwzU-n8TNPkRvKWSvKmm6gv08bEudyY9KscQizTlsiuykg2jN7NLvj9eFjmJVK5IhOdH8ueHpyldFYcDWZKdP60nxZ3X69_Xn2vbn98u7m6vK16aHGukGNvm9oAEwNCjZarGmvkgvGhFS2pruk71QoO0FrVYYM5AYkKBjkwhQ2cFjcHbh_MWm-jy553Ohin94MQR50f4exEeqi5QNs2suutZAKRkzC96Ji1DShgmfXlwNou3YZ6S36OZnoFfX3j3UqP4UFz3nCpFGbCpydCDL8XSrPeuGRzssZTWJIGLhkKBZxn6cf_pOuwRJ-zyipQiDVTMqs-vLT07OXvL2YBHARp-xg_xX8YzvRjXfShLjrXRe_ronfwB5fbr1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138995084</pqid></control><display><type>article</type><title>Artificial intelligence enabled smart mask for speech recognition for future hearing devices</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hameed, Hira ; Lubna ; Usman, Muhammad ; Kazim, Jalil Ur Rehman ; Assaleh, Khaled ; Arshad, Kamran ; Hussain, Amir ; Imran, Muhammad ; Abbasi, Qammer H.</creator><creatorcontrib>Hameed, Hira ; Lubna ; Usman, Muhammad ; Kazim, Jalil Ur Rehman ; Assaleh, Khaled ; Arshad, Kamran ; Hussain, Amir ; Imran, Muhammad ; Abbasi, Qammer H.</creatorcontrib><description>In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limitations, privacy concerns as well as wearable device discomfort for subjects and disturb their daily routines. Furthermore, in the era of coronavirus (COVID-19), where face masks are the norm, vision-based and wearable-based technologies for hearing aids are ineffective. To address the fundamental limitations of camera-based and wearable-based systems, this paper proposes a Radio Frequency Identification (RFID)-based smart mask for a Lip-reading framework capable of reading Lips under face masks, enabling effective speech recognition and fostering conversational accessibility for individuals with hearing impairment. The system uses RFID technology to make Radio Frequency (RF) sensing-based Lip-reading possible. A smart RFID face mask is used to collect a dataset containing three different classes of vowels (A, E, I, O, U), Consonants (F, G, M, S), and words (Fish, Goat, Meal, Moon, Snake). The collected data are fed into well-known machine-learning models for classification. A high classification accuracy is achieved by individual classes and combined datasets. On the RFID combined dataset, the Random Forest model achieves a high classification accuracy of 80%.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-81904-y</identifier><identifier>PMID: 39627338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 692/700 ; Artificial Intelligence ; Cameras ; Classification ; Coronaviruses ; COVID-19 ; Face ; Hearing Aids ; Hearing loss ; Hearing Loss - rehabilitation ; Humanities and Social Sciences ; Humans ; Lipreading ; Machine Learning ; Masks ; multidisciplinary ; Pattern recognition ; Protective equipment ; Radio frequency identification ; Radio Frequency Identification Device - methods ; Radio-tagging ; SARS-CoV-2 ; Science ; Science (multidisciplinary) ; Speech ; Speech recognition ; Speech Recognition Software ; Voice recognition ; Wearable Electronic Devices</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.30112-11</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3138995084/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3138995084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39627338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hameed, Hira</creatorcontrib><creatorcontrib>Lubna</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Kazim, Jalil Ur Rehman</creatorcontrib><creatorcontrib>Assaleh, Khaled</creatorcontrib><creatorcontrib>Arshad, Kamran</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Abbasi, Qammer H.</creatorcontrib><title>Artificial intelligence enabled smart mask for speech recognition for future hearing devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limitations, privacy concerns as well as wearable device discomfort for subjects and disturb their daily routines. Furthermore, in the era of coronavirus (COVID-19), where face masks are the norm, vision-based and wearable-based technologies for hearing aids are ineffective. To address the fundamental limitations of camera-based and wearable-based systems, this paper proposes a Radio Frequency Identification (RFID)-based smart mask for a Lip-reading framework capable of reading Lips under face masks, enabling effective speech recognition and fostering conversational accessibility for individuals with hearing impairment. The system uses RFID technology to make Radio Frequency (RF) sensing-based Lip-reading possible. A smart RFID face mask is used to collect a dataset containing three different classes of vowels (A, E, I, O, U), Consonants (F, G, M, S), and words (Fish, Goat, Meal, Moon, Snake). The collected data are fed into well-known machine-learning models for classification. A high classification accuracy is achieved by individual classes and combined datasets. On the RFID combined dataset, the Random Forest model achieves a high classification accuracy of 80%.</description><subject>639/166</subject><subject>692/700</subject><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Classification</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Face</subject><subject>Hearing Aids</subject><subject>Hearing loss</subject><subject>Hearing Loss - rehabilitation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lipreading</subject><subject>Machine Learning</subject><subject>Masks</subject><subject>multidisciplinary</subject><subject>Pattern recognition</subject><subject>Protective equipment</subject><subject>Radio frequency identification</subject><subject>Radio Frequency Identification Device - methods</subject><subject>Radio-tagging</subject><subject>SARS-CoV-2</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Speech Recognition Software</subject><subject>Voice recognition</subject><subject>Wearable Electronic Devices</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkkFr3DAQhU1paEKSP9BDMfTSi1NJI9uaUwkhbQOBXppbQMjy2KutV9pKdmD_fZXdNE2qi8To8fH09IriPWcXnIH6nCSvUVVMyEpxZLLavSlOBJN1JUCIty_Ox8V5SmuWVy1QcnxXHAM2ogVQJ8X9ZZzd4KwzU-n8TNPkRvKWSvKmm6gv08bEudyY9KscQizTlsiuykg2jN7NLvj9eFjmJVK5IhOdH8ueHpyldFYcDWZKdP60nxZ3X69_Xn2vbn98u7m6vK16aHGukGNvm9oAEwNCjZarGmvkgvGhFS2pruk71QoO0FrVYYM5AYkKBjkwhQ2cFjcHbh_MWm-jy553Ohin94MQR50f4exEeqi5QNs2suutZAKRkzC96Ji1DShgmfXlwNou3YZ6S36OZnoFfX3j3UqP4UFz3nCpFGbCpydCDL8XSrPeuGRzssZTWJIGLhkKBZxn6cf_pOuwRJ-zyipQiDVTMqs-vLT07OXvL2YBHARp-xg_xX8YzvRjXfShLjrXRe_ronfwB5fbr1I</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Hameed, Hira</creator><creator>Lubna</creator><creator>Usman, Muhammad</creator><creator>Kazim, Jalil Ur Rehman</creator><creator>Assaleh, Khaled</creator><creator>Arshad, Kamran</creator><creator>Hussain, Amir</creator><creator>Imran, Muhammad</creator><creator>Abbasi, Qammer H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241203</creationdate><title>Artificial intelligence enabled smart mask for speech recognition for future hearing devices</title><author>Hameed, Hira ; Lubna ; Usman, Muhammad ; Kazim, Jalil Ur Rehman ; Assaleh, Khaled ; Arshad, Kamran ; Hussain, Amir ; Imran, Muhammad ; Abbasi, Qammer H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d379t-919dc65a302f9359c1859591201f727e8b6db8721337c8b9691034983f4f08963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166</topic><topic>692/700</topic><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Classification</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Face</topic><topic>Hearing Aids</topic><topic>Hearing loss</topic><topic>Hearing Loss - rehabilitation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lipreading</topic><topic>Machine Learning</topic><topic>Masks</topic><topic>multidisciplinary</topic><topic>Pattern recognition</topic><topic>Protective equipment</topic><topic>Radio frequency identification</topic><topic>Radio Frequency Identification Device - methods</topic><topic>Radio-tagging</topic><topic>SARS-CoV-2</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Speech Recognition Software</topic><topic>Voice recognition</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hameed, Hira</creatorcontrib><creatorcontrib>Lubna</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Kazim, Jalil Ur Rehman</creatorcontrib><creatorcontrib>Assaleh, Khaled</creatorcontrib><creatorcontrib>Arshad, Kamran</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Abbasi, Qammer H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hameed, Hira</au><au>Lubna</au><au>Usman, Muhammad</au><au>Kazim, Jalil Ur Rehman</au><au>Assaleh, Khaled</au><au>Arshad, Kamran</au><au>Hussain, Amir</au><au>Imran, Muhammad</au><au>Abbasi, Qammer H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence enabled smart mask for speech recognition for future hearing devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>30112</spage><epage>11</epage><pages>30112-11</pages><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limitations, privacy concerns as well as wearable device discomfort for subjects and disturb their daily routines. Furthermore, in the era of coronavirus (COVID-19), where face masks are the norm, vision-based and wearable-based technologies for hearing aids are ineffective. To address the fundamental limitations of camera-based and wearable-based systems, this paper proposes a Radio Frequency Identification (RFID)-based smart mask for a Lip-reading framework capable of reading Lips under face masks, enabling effective speech recognition and fostering conversational accessibility for individuals with hearing impairment. The system uses RFID technology to make Radio Frequency (RF) sensing-based Lip-reading possible. A smart RFID face mask is used to collect a dataset containing three different classes of vowels (A, E, I, O, U), Consonants (F, G, M, S), and words (Fish, Goat, Meal, Moon, Snake). The collected data are fed into well-known machine-learning models for classification. A high classification accuracy is achieved by individual classes and combined datasets. On the RFID combined dataset, the Random Forest model achieves a high classification accuracy of 80%.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39627338</pmid><doi>10.1038/s41598-024-81904-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-12, Vol.14 (1), p.30112-11
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f5129c764bdc402991e2ad2b0cc63830
source ProQuest - Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166
692/700
Artificial Intelligence
Cameras
Classification
Coronaviruses
COVID-19
Face
Hearing Aids
Hearing loss
Hearing Loss - rehabilitation
Humanities and Social Sciences
Humans
Lipreading
Machine Learning
Masks
multidisciplinary
Pattern recognition
Protective equipment
Radio frequency identification
Radio Frequency Identification Device - methods
Radio-tagging
SARS-CoV-2
Science
Science (multidisciplinary)
Speech
Speech recognition
Speech Recognition Software
Voice recognition
Wearable Electronic Devices
title Artificial intelligence enabled smart mask for speech recognition for future hearing devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20enabled%20smart%20mask%20for%20speech%20recognition%20for%20future%20hearing%20devices&rft.jtitle=Scientific%20reports&rft.au=Hameed,%20Hira&rft.date=2024-12-03&rft.volume=14&rft.issue=1&rft.spage=30112&rft.epage=11&rft.pages=30112-11&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-81904-y&rft_dat=%3Cproquest_doaj_%3E3140928311%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d379t-919dc65a302f9359c1859591201f727e8b6db8721337c8b9691034983f4f08963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3138995084&rft_id=info:pmid/39627338&rfr_iscdi=true