Loading…
Artificial intelligence enabled smart mask for speech recognition for future hearing devices
In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limi...
Saved in:
Published in: | Scientific reports 2024-12, Vol.14 (1), p.30112-11 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 30112 |
container_title | Scientific reports |
container_volume | 14 |
creator | Hameed, Hira Lubna Usman, Muhammad Kazim, Jalil Ur Rehman Assaleh, Khaled Arshad, Kamran Hussain, Amir Imran, Muhammad Abbasi, Qammer H. |
description | In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limitations, privacy concerns as well as wearable device discomfort for subjects and disturb their daily routines. Furthermore, in the era of coronavirus (COVID-19), where face masks are the norm, vision-based and wearable-based technologies for hearing aids are ineffective. To address the fundamental limitations of camera-based and wearable-based systems, this paper proposes a Radio Frequency Identification (RFID)-based smart mask for a Lip-reading framework capable of reading Lips under face masks, enabling effective speech recognition and fostering conversational accessibility for individuals with hearing impairment. The system uses RFID technology to make Radio Frequency (RF) sensing-based Lip-reading possible. A smart RFID face mask is used to collect a dataset containing three different classes of vowels (A, E, I, O, U), Consonants (F, G, M, S), and words (Fish, Goat, Meal, Moon, Snake). The collected data are fed into well-known machine-learning models for classification. A high classification accuracy is achieved by individual classes and combined datasets. On the RFID combined dataset, the Random Forest model achieves a high classification accuracy of 80%. |
doi_str_mv | 10.1038/s41598-024-81904-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5129c764bdc402991e2ad2b0cc63830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5129c764bdc402991e2ad2b0cc63830</doaj_id><sourcerecordid>3140928311</sourcerecordid><originalsourceid>FETCH-LOGICAL-d379t-919dc65a302f9359c1859591201f727e8b6db8721337c8b9691034983f4f08963</originalsourceid><addsrcrecordid>eNpdkkFr3DAQhU1paEKSP9BDMfTSi1NJI9uaUwkhbQOBXppbQMjy2KutV9pKdmD_fZXdNE2qi8To8fH09IriPWcXnIH6nCSvUVVMyEpxZLLavSlOBJN1JUCIty_Ox8V5SmuWVy1QcnxXHAM2ogVQJ8X9ZZzd4KwzU-n8TNPkRvKWSvKmm6gv08bEudyY9KscQizTlsiuykg2jN7NLvj9eFjmJVK5IhOdH8ueHpyldFYcDWZKdP60nxZ3X69_Xn2vbn98u7m6vK16aHGukGNvm9oAEwNCjZarGmvkgvGhFS2pruk71QoO0FrVYYM5AYkKBjkwhQ2cFjcHbh_MWm-jy553Ohin94MQR50f4exEeqi5QNs2suutZAKRkzC96Ji1DShgmfXlwNou3YZ6S36OZnoFfX3j3UqP4UFz3nCpFGbCpydCDL8XSrPeuGRzssZTWJIGLhkKBZxn6cf_pOuwRJ-zyipQiDVTMqs-vLT07OXvL2YBHARp-xg_xX8YzvRjXfShLjrXRe_ronfwB5fbr1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138995084</pqid></control><display><type>article</type><title>Artificial intelligence enabled smart mask for speech recognition for future hearing devices</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hameed, Hira ; Lubna ; Usman, Muhammad ; Kazim, Jalil Ur Rehman ; Assaleh, Khaled ; Arshad, Kamran ; Hussain, Amir ; Imran, Muhammad ; Abbasi, Qammer H.</creator><creatorcontrib>Hameed, Hira ; Lubna ; Usman, Muhammad ; Kazim, Jalil Ur Rehman ; Assaleh, Khaled ; Arshad, Kamran ; Hussain, Amir ; Imran, Muhammad ; Abbasi, Qammer H.</creatorcontrib><description>In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limitations, privacy concerns as well as wearable device discomfort for subjects and disturb their daily routines. Furthermore, in the era of coronavirus (COVID-19), where face masks are the norm, vision-based and wearable-based technologies for hearing aids are ineffective. To address the fundamental limitations of camera-based and wearable-based systems, this paper proposes a Radio Frequency Identification (RFID)-based smart mask for a Lip-reading framework capable of reading Lips under face masks, enabling effective speech recognition and fostering conversational accessibility for individuals with hearing impairment. The system uses RFID technology to make Radio Frequency (RF) sensing-based Lip-reading possible. A smart RFID face mask is used to collect a dataset containing three different classes of vowels (A, E, I, O, U), Consonants (F, G, M, S), and words (Fish, Goat, Meal, Moon, Snake). The collected data are fed into well-known machine-learning models for classification. A high classification accuracy is achieved by individual classes and combined datasets. On the RFID combined dataset, the Random Forest model achieves a high classification accuracy of 80%.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-81904-y</identifier><identifier>PMID: 39627338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 692/700 ; Artificial Intelligence ; Cameras ; Classification ; Coronaviruses ; COVID-19 ; Face ; Hearing Aids ; Hearing loss ; Hearing Loss - rehabilitation ; Humanities and Social Sciences ; Humans ; Lipreading ; Machine Learning ; Masks ; multidisciplinary ; Pattern recognition ; Protective equipment ; Radio frequency identification ; Radio Frequency Identification Device - methods ; Radio-tagging ; SARS-CoV-2 ; Science ; Science (multidisciplinary) ; Speech ; Speech recognition ; Speech Recognition Software ; Voice recognition ; Wearable Electronic Devices</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.30112-11</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3138995084/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3138995084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39627338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hameed, Hira</creatorcontrib><creatorcontrib>Lubna</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Kazim, Jalil Ur Rehman</creatorcontrib><creatorcontrib>Assaleh, Khaled</creatorcontrib><creatorcontrib>Arshad, Kamran</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Abbasi, Qammer H.</creatorcontrib><title>Artificial intelligence enabled smart mask for speech recognition for future hearing devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limitations, privacy concerns as well as wearable device discomfort for subjects and disturb their daily routines. Furthermore, in the era of coronavirus (COVID-19), where face masks are the norm, vision-based and wearable-based technologies for hearing aids are ineffective. To address the fundamental limitations of camera-based and wearable-based systems, this paper proposes a Radio Frequency Identification (RFID)-based smart mask for a Lip-reading framework capable of reading Lips under face masks, enabling effective speech recognition and fostering conversational accessibility for individuals with hearing impairment. The system uses RFID technology to make Radio Frequency (RF) sensing-based Lip-reading possible. A smart RFID face mask is used to collect a dataset containing three different classes of vowels (A, E, I, O, U), Consonants (F, G, M, S), and words (Fish, Goat, Meal, Moon, Snake). The collected data are fed into well-known machine-learning models for classification. A high classification accuracy is achieved by individual classes and combined datasets. On the RFID combined dataset, the Random Forest model achieves a high classification accuracy of 80%.</description><subject>639/166</subject><subject>692/700</subject><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Classification</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Face</subject><subject>Hearing Aids</subject><subject>Hearing loss</subject><subject>Hearing Loss - rehabilitation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lipreading</subject><subject>Machine Learning</subject><subject>Masks</subject><subject>multidisciplinary</subject><subject>Pattern recognition</subject><subject>Protective equipment</subject><subject>Radio frequency identification</subject><subject>Radio Frequency Identification Device - methods</subject><subject>Radio-tagging</subject><subject>SARS-CoV-2</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Speech Recognition Software</subject><subject>Voice recognition</subject><subject>Wearable Electronic Devices</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkkFr3DAQhU1paEKSP9BDMfTSi1NJI9uaUwkhbQOBXppbQMjy2KutV9pKdmD_fZXdNE2qi8To8fH09IriPWcXnIH6nCSvUVVMyEpxZLLavSlOBJN1JUCIty_Ox8V5SmuWVy1QcnxXHAM2ogVQJ8X9ZZzd4KwzU-n8TNPkRvKWSvKmm6gv08bEudyY9KscQizTlsiuykg2jN7NLvj9eFjmJVK5IhOdH8ueHpyldFYcDWZKdP60nxZ3X69_Xn2vbn98u7m6vK16aHGukGNvm9oAEwNCjZarGmvkgvGhFS2pruk71QoO0FrVYYM5AYkKBjkwhQ2cFjcHbh_MWm-jy553Ohin94MQR50f4exEeqi5QNs2suutZAKRkzC96Ji1DShgmfXlwNou3YZ6S36OZnoFfX3j3UqP4UFz3nCpFGbCpydCDL8XSrPeuGRzssZTWJIGLhkKBZxn6cf_pOuwRJ-zyipQiDVTMqs-vLT07OXvL2YBHARp-xg_xX8YzvRjXfShLjrXRe_ronfwB5fbr1I</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Hameed, Hira</creator><creator>Lubna</creator><creator>Usman, Muhammad</creator><creator>Kazim, Jalil Ur Rehman</creator><creator>Assaleh, Khaled</creator><creator>Arshad, Kamran</creator><creator>Hussain, Amir</creator><creator>Imran, Muhammad</creator><creator>Abbasi, Qammer H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241203</creationdate><title>Artificial intelligence enabled smart mask for speech recognition for future hearing devices</title><author>Hameed, Hira ; Lubna ; Usman, Muhammad ; Kazim, Jalil Ur Rehman ; Assaleh, Khaled ; Arshad, Kamran ; Hussain, Amir ; Imran, Muhammad ; Abbasi, Qammer H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d379t-919dc65a302f9359c1859591201f727e8b6db8721337c8b9691034983f4f08963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166</topic><topic>692/700</topic><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Classification</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Face</topic><topic>Hearing Aids</topic><topic>Hearing loss</topic><topic>Hearing Loss - rehabilitation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lipreading</topic><topic>Machine Learning</topic><topic>Masks</topic><topic>multidisciplinary</topic><topic>Pattern recognition</topic><topic>Protective equipment</topic><topic>Radio frequency identification</topic><topic>Radio Frequency Identification Device - methods</topic><topic>Radio-tagging</topic><topic>SARS-CoV-2</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Speech Recognition Software</topic><topic>Voice recognition</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hameed, Hira</creatorcontrib><creatorcontrib>Lubna</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Kazim, Jalil Ur Rehman</creatorcontrib><creatorcontrib>Assaleh, Khaled</creatorcontrib><creatorcontrib>Arshad, Kamran</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Abbasi, Qammer H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hameed, Hira</au><au>Lubna</au><au>Usman, Muhammad</au><au>Kazim, Jalil Ur Rehman</au><au>Assaleh, Khaled</au><au>Arshad, Kamran</au><au>Hussain, Amir</au><au>Imran, Muhammad</au><au>Abbasi, Qammer H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence enabled smart mask for speech recognition for future hearing devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>30112</spage><epage>11</epage><pages>30112-11</pages><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In recent years, Lip-reading has emerged as a significant research challenge. The aim is to recognise speech by analysing Lip movements. The majority of Lip-reading technologies are based on cameras and wearable devices. However, these technologies have well-known occlusion and ambient lighting limitations, privacy concerns as well as wearable device discomfort for subjects and disturb their daily routines. Furthermore, in the era of coronavirus (COVID-19), where face masks are the norm, vision-based and wearable-based technologies for hearing aids are ineffective. To address the fundamental limitations of camera-based and wearable-based systems, this paper proposes a Radio Frequency Identification (RFID)-based smart mask for a Lip-reading framework capable of reading Lips under face masks, enabling effective speech recognition and fostering conversational accessibility for individuals with hearing impairment. The system uses RFID technology to make Radio Frequency (RF) sensing-based Lip-reading possible. A smart RFID face mask is used to collect a dataset containing three different classes of vowels (A, E, I, O, U), Consonants (F, G, M, S), and words (Fish, Goat, Meal, Moon, Snake). The collected data are fed into well-known machine-learning models for classification. A high classification accuracy is achieved by individual classes and combined datasets. On the RFID combined dataset, the Random Forest model achieves a high classification accuracy of 80%.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39627338</pmid><doi>10.1038/s41598-024-81904-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-12, Vol.14 (1), p.30112-11 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f5129c764bdc402991e2ad2b0cc63830 |
source | ProQuest - Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166 692/700 Artificial Intelligence Cameras Classification Coronaviruses COVID-19 Face Hearing Aids Hearing loss Hearing Loss - rehabilitation Humanities and Social Sciences Humans Lipreading Machine Learning Masks multidisciplinary Pattern recognition Protective equipment Radio frequency identification Radio Frequency Identification Device - methods Radio-tagging SARS-CoV-2 Science Science (multidisciplinary) Speech Speech recognition Speech Recognition Software Voice recognition Wearable Electronic Devices |
title | Artificial intelligence enabled smart mask for speech recognition for future hearing devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20enabled%20smart%20mask%20for%20speech%20recognition%20for%20future%20hearing%20devices&rft.jtitle=Scientific%20reports&rft.au=Hameed,%20Hira&rft.date=2024-12-03&rft.volume=14&rft.issue=1&rft.spage=30112&rft.epage=11&rft.pages=30112-11&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-81904-y&rft_dat=%3Cproquest_doaj_%3E3140928311%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d379t-919dc65a302f9359c1859591201f727e8b6db8721337c8b9691034983f4f08963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3138995084&rft_id=info:pmid/39627338&rfr_iscdi=true |