Loading…
Design and Analysis of Inertial Platform Insulation of the ELI-NP Project of Laser and Gamma Beam Systems
All the installations, devices, and annexes within the laser and the gamma ray production system within the ELI-NP project from Magurele are installed on an inertial platform that weighs over 54,000 tons. The platform is made of concrete, is insulated from the outside environment, and is supported b...
Saved in:
Published in: | Symmetry (Basel) 2020-12, Vol.12 (12), p.1972 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All the installations, devices, and annexes within the laser and the gamma ray production system within the ELI-NP project from Magurele are installed on an inertial platform that weighs over 54,000 tons. The platform is made of concrete, is insulated from the outside environment, and is supported by spring batteries and shock absorbers. The flatness of this platform respects some very strict standards, and, taking into account the processes that take place on the platform, the transmission of the different trepidations of the environment to the inertial mass must be extremely low. For this reason, a static study and a vibration analysis of the platform, performed in this paper, are required. The static analysis verifies if the flatness of the platform can be observed in operating conditions, and the dynamic analysis verifies how excitations coming from the external environment can be transmitted to the measuring equipment. The finite element method is used both to determine the deformability of the concrete platform for different loads, placed at different points and to determine its eigenvalues and its eigenmodes of vibration. The obtained results are analyzed and constructive solutions are proposed to improve the realized system, through a judicious placement of the installations and the distribution of the masses on the platform. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12121972 |