Loading…

Industrial-scale 61-channel monolithic silicalite-1 membranes for butane isomer separation

Developing energy-saving membrane and technology is important for the separation of hydrocarbon isomers to replace the energy-intensive distillation. Silicalite-1 membrane is a promising membrane material but difficult to be scaled up. In this work, separation performance of industrial-scale monolit...

Full description

Saved in:
Bibliographic Details
Published in:Advanced membranes 2024, Vol.4, p.100096, Article 100096
Main Authors: Hong, Hongliang, Yu, Kunlin, Liu, Hongbin, Zhou, Rongfei, Xing, Weihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Developing energy-saving membrane and technology is important for the separation of hydrocarbon isomers to replace the energy-intensive distillation. Silicalite-1 membrane is a promising membrane material but difficult to be scaled up. In this work, separation performance of industrial-scale monolithic silicalite-1 membranes in term of actual butane mixtures has been reported for the first time. Each 61-channel monolithic membrane has effective area and surface-to-volume ratio of 0.2 ​m2 and 400 ​m2/m3, which are about 20 and 5.6 times higher than that of the common tubular one with the same length, respectively. Average n-butane/i-butane separation factor (34) of the industrial-scale membranes was even higher than or comparable to that of the reported small-area zeolite membranes. The influences of test parameters on permeances and separation factors of the membranes and the long-term stability were examined. Reynold numbers was used to correlate the concentration polarization (CP) with the reduction of separation performance. A solution was proposed to reduce the effect of CP. It suggests that the industrial-scale and high-performance monolithic silicalite-1 membranes are suitable for actual applications of butane separation. [Display omitted]
ISSN:2772-8234
2772-8234
DOI:10.1016/j.advmem.2024.100096