Loading…
A Novel Method to Reduce the Laser Drilling Time for Hole Cluster considering the Influence of Residual Vibration of the Sample Stage
In large areas of laser drilling, the residual vibration occurs when the sample stage moves in PTP (Point to Point) movement. It affects the surface quality and processing efficiency of the holes. The common solution for this problem is to set the laser irradiation delay time by the controller to wa...
Saved in:
Published in: | Shock and vibration 2020, Vol.2020 (2020), p.1-15 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In large areas of laser drilling, the residual vibration occurs when the sample stage moves in PTP (Point to Point) movement. It affects the surface quality and processing efficiency of the holes. The common solution for this problem is to set the laser irradiation delay time by the controller to wait for the residual vibration attenuation, but the whole drilling circle will increase. In this paper, a new method is introduced to reduce the laser drilling circle. By setting the allowable threshold of the residual vibration for the subsequent process, the sum of the time in deceleration segment of the trapezoidal moving profile, and the time when the residual vibration attenuates below the amplitude threshold (ST) can be minimized as the optimization goal. The results show that for a given operating speed, there is always an optimum acceleration value for the deceleration segment of the trapezoidal moving profile, which minimizes the ST value. Further, the delay time for laser irradiation can also be estimated according to the optimal acceleration during laser drilling. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2020/8342041 |