Loading…

Early Jurassic extrinsic solar system dynamics versus intrinsic Earth processes: Toarcian sedimentation and benthic life in deep-sea contourite drift facies, Cardigan Bay Basin, UK

The Cardigan Bay Basin (UK) may have functioned as a deep and narrow strait, and thereby influenced Early Jurassic oceanic circulation through the northern and southern Laurasian Seaway, and between Boreal and Peri-Tethys domains. Toarcian hemipelagic deposits of the basin in the Mochras borehole sh...

Full description

Saved in:
Bibliographic Details
Published in:Progress in earth and planetary science 2024-12, Vol.11 (1), p.18-34, Article 18
Main Authors: Pieńkowski, Grzegorz, Uchman, Alfred, Ninard, Krzysztof, Page, Kevin N., Hesselbo, Stephen P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Cardigan Bay Basin (UK) may have functioned as a deep and narrow strait, and thereby influenced Early Jurassic oceanic circulation through the northern and southern Laurasian Seaway, and between Boreal and Peri-Tethys domains. Toarcian hemipelagic deposits of the basin in the Mochras borehole show strongly bioturbated contourite facies. Trace fossils are strongly dominated by Phycosiphon incertum (represented by four morphotypes), which was produced by opportunistic colonizers. Thalassinoides , Schaubcylindrichnus and Trichichnus are common (the latter is a deep-tier trace fossil produced by filamentous sulfide-oxidizing bacteria with a high tolerance for dysoxia), accompanied by less common Zoophycos , Planolites , Palaeophycus , Teichichnus , Rhizocorallium , Chondrites, and dwelling and resting structures, such as cf. Polykladichnus , Siphonichnus , Skolithos , Arenicolites , Monocraterion and Lockeia . Ichnological and lithological signals suggest repetitive fluctuations in benthic conditions attributed to a hierarchy of orbital cycles (precession and obliquity [4th order], short eccentricity [3rd order], long eccentricity [2nd order] and Earth–Mars secular resonance [1st order]). The Pliensbachian–Toarcian transition appears to be a significant palaeoceanographic turning point in the Cardigan Bay Basin, starting a CaCO 3 decline, and with the most severe oxygen crisis of the Tenuicostatum Zone (here dysoxic but not anoxic) ending at the onset, in the early Serpentinum Zone (Exaratum Subzone), of the Toarcian negative carbon isotope excursion (To-CIE—linked with the Toarcian Oceanic Anoxic Event occurring in the lower part in the Serpentinum Zone). This trend contrasts with the prevalence of anoxia synchronous with the To-CIE in many other settings. Minor dysoxia returned to the Mochras setting in the latest Thouarsense to Dispansum zone interval. Extreme climate warming during the To-CIE may have enhanced and caused a reversal in the direction of deep marine circulation, improving oxygenation of the sea floor. Spectral analysis of binary data on ichnotaxa appearances gives high confidence in orbital signals and allows refined estimation of ammonite zones and the duration of the Toarcian (minimum ~ 9.4 Myr).
ISSN:2197-4284
2197-4284
DOI:10.1186/s40645-024-00612-3