Loading…
Superfluid density and collective modes of fermion superfluid in dice lattice
The superfluid properties of attractive Hubbard model in dice lattice are investigated. It is found that three superfluid order parameters increase as the interaction increases. When the filling factor falls into the flat band, due to the infinite large density of states, the resultant superfluid or...
Saved in:
Published in: | Scientific reports 2021-06, Vol.11 (1), p.13572-13572, Article 13572 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The superfluid properties of attractive Hubbard model in dice lattice are investigated. It is found that three superfluid order parameters increase as the interaction increases. When the filling factor falls into the flat band, due to the infinite large density of states, the resultant superfluid order parameters are proportional to interaction strength, which is in striking contrast with the exponentially small counterparts in usual superfluid (or superconductor). When the interaction is weak, and the filling factor is near the bottom of the lowest band (or the top of highest band), the superfluid density is determined by the effective mass of the lowest (or highest) single-particle band. When the interaction is strong and filling factor is small, the superfluid density is inversely proportional to interaction strength, which is related to effective mass of tightly bound pairs. In the strong interaction limit and finite filling, the asymptotic behaviors of superfluid density can be captured by a parabolic function of filling factor. Furthermore, when the filling is in flat band, the superfluid density shows a logarithmic singularity as the interaction approaches zero. In addition, there exist three undamped collective modes for strong interactions. The lowest excitation is gapless phonon, which is characterized by the total density oscillations. The two others are gapped Leggett modes, which correspond relative density fluctuations between sublattices. The collective modes are also reflected in the two-particle spectral functions by sharp peaks. Furthermore, it is found that the two-particle spectral functions satisfy an exact sum-rule, which is directly related to the filling factor (or density of particle). The sum-rule of the spectral functions may be useful to distinguish between the hole-doped and particle-doped superfluid (superconductor) in experiments. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-93007-z |