Loading…

An Aerosol Sensor for Multi-Sized Particles Detection Based on Surface Acoustic Wave Resonator and Cascade Impactor

This research proposed the design, fabrication, and experiments of a surface acoustic wave resonator (SAWR)-based multi-sized particles monitor. A wide range selection and monitoring of large coarse particles (LCP), inhalable particles (PM10), and fine inhalable particles (PM2.5) were achieved by co...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-11, Vol.11 (21), p.9833
Main Authors: Chen, Zhiyuan, Liu, Jiuling, Liu, Minghua, You, Ran, He, Shitang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research proposed the design, fabrication, and experiments of a surface acoustic wave resonator (SAWR)-based multi-sized particles monitor. A wide range selection and monitoring of large coarse particles (LCP), inhalable particles (PM10), and fine inhalable particles (PM2.5) were achieved by combining high-performance 311 MHz SAWRs and a specially designed cascade impactor. This paper calculated the normalized sensitivity distribution of the chip to the mass loading effect, extracted the optimal response area for particle attachment, analyzed the influence of the distance between nozzle and chip surface on the particle distribution, and evaluated the collection efficiency of the specially designed 2 LPM (L/min) impactor through computational fluid dynamics simulation software. An experimental platform was built to conduct the response experiment of the sensor to particle-containing gas generated by the combustion of leaf fragments and repeatability test. We verified the results of the particle diameter captured at each stage. This research suggests that the sensor’s response had good linearity and repeatability, while the particles collected on the surface of the SAWR in each impactor stage met the desired diameter, observed through a microscope.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11219833