Loading…
An Insight by Molecular Sensory Science Approaches to Contributions and Variations of the Key Odorants in Shiitake Mushrooms
An insight using molecular sensory science approaches to the contributions and variations of the key odorants in shiitake mushrooms is revealed in this study. Odorants were extracted by headspace solid phase microextraction (HS-SPME) and direct solvent extraction combined with solvent-assisted flavo...
Saved in:
Published in: | Foods 2021-03, Vol.10 (3), p.622 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An insight using molecular sensory science approaches to the contributions and variations of the key odorants in shiitake mushrooms is revealed in this study. Odorants were extracted by headspace solid phase microextraction (HS-SPME) and direct solvent extraction combined with solvent-assisted flavor evaporation (DSE-SAFE) in fresh and hot-air-dried shiitake mushrooms. Among them, 18 and 22 predominant odorants were determined by detection frequency analysis (DFA) and aroma extract dilution analysis (AEDA) combined with gas chromatography-olfactometry (GC-O) in the fresh and dried samples, respectively. The contributions of these predominant odorants in the food matrix were determined by quantification and odor activity values (OAVs) with aroma recombination verification. There were 13 and 14 odorants identified as key contributing odorants to overall aroma, respectively. 1-Octen-3-ol and 1-octen-3-one were the most key contributing odorants in the fresh samples in contributing mushroom-like odor. After hot-air-drying, the OAV and concentrations on dry basis of the key contributing odorants changed, due to oxidation, degradation, caramelization and Maillard reactions of fatty acids, polysaccharides and amino acids. 1-Octen-3-ol was reduced most significantly and degraded to 1-hydroxy-3-octanone, while phenylethyl alcohol increased the most and was formed by phenylalanine. In hot-air-dried samples, lenthionine became the most important contributor and samples were characterized by a sulfury odor. Overall contributions and variations of odorants to the aroma of shiitake mushrooms were revealed at the molecular level. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods10030622 |