Loading…
Development of flexible textile aluminium-air battery prototype
There is one component that virtually any embedded wearable needs—a power source. This paper proposes an energy source, which contains no harmful substances, can be stored in a stand-by dry state for indefinite time period, is flexible and has tactile characteristics similar to that of textile. The...
Saved in:
Published in: | Materials for renewable and sustainable energy 2021-03, Vol.10 (1), p.1-6, Article 6 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is one component that virtually any embedded wearable needs—a power source. This paper proposes an energy source, which contains no harmful substances, can be stored in a stand-by dry state for indefinite time period, is flexible and has tactile characteristics similar to that of textile. The main feature of this energy source is the separation of the electrolyte and the electrodes—the electrolyte is applied only when the battery needs to be activated. This makes storage time in a dry state virtually infinite. It expands their potential use to storage solutions and healthcare/health monitoring solutions, because the design of the battery allows it to be used as an active sensor, which generates electric current, when it detects liquid. We stress that this solution is suitable for specific applications only, outlined in the paper. The main components of the battery include aluminium anode, air cathode and the cotton shell. The design includes only textile-based materials, which ensure greater flexibility and better fusion with textile materials, where the battery is intended to be integrated. Besides that, results of the experiments with multi-cell battery prototype are presented. |
---|---|
ISSN: | 2194-1459 2194-1467 |
DOI: | 10.1007/s40243-021-00191-z |