Loading…

IRSTFormer: A Hierarchical Vision Transformer for Infrared Small Target Detection

Infrared small target detection occupies an important position in the infrared search and track system. The most common size of infrared images has developed to 640×512. The field-of-view (FOV) also increases significantly. As the result, there is more interference that hinders the detection of smal...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-07, Vol.14 (14), p.3258
Main Authors: Chen, Gao, Wang, Weihua, Tan, Sirui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-3f777160aa809a46b3c064b73fd65f0e5b4aca1edecf2c885604d4e2fd2c50223
cites cdi_FETCH-LOGICAL-c291t-3f777160aa809a46b3c064b73fd65f0e5b4aca1edecf2c885604d4e2fd2c50223
container_end_page
container_issue 14
container_start_page 3258
container_title Remote sensing (Basel, Switzerland)
container_volume 14
creator Chen, Gao
Wang, Weihua
Tan, Sirui
description Infrared small target detection occupies an important position in the infrared search and track system. The most common size of infrared images has developed to 640×512. The field-of-view (FOV) also increases significantly. As the result, there is more interference that hinders the detection of small targets in the image. However, the traditional model-driven methods do not have the capability of feature learning, resulting in poor adaptability to various scenes. Owing to the locality of convolution kernels, recent convolutional neural networks (CNN) cannot model the long-range dependency in the image to suppress false alarms. In this paper, we propose a hierarchical vision transformer-based method for infrared small target detection in larger size and FOV images of 640×512. Specifically, we design a hierarchical overlapped small patch transformer (HOSPT), instead of the CNN, to encode multi-scale features from the single-frame image. For the decoder, a top-down feature aggregation module (TFAM) is adopted to fuse features from adjacent scales. Furthermore, after analyzing existing loss functions, a simple yet effective combination is exploited to optimize the network convergence. Compared to other state-of-the-art methods, the normalized intersection-over-union (nIoU) on our IRST640 dataset and public SIRST dataset reaches 0.856 and 0.758. The detailed ablation experiments are conducted to validate the effectiveness and reasonability of each component in the method.
doi_str_mv 10.3390/rs14143258
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f573306f2efa4a908ea041f12f892b7c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f573306f2efa4a908ea041f12f892b7c</doaj_id><sourcerecordid>2694059958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3f777160aa809a46b3c064b73fd65f0e5b4aca1edecf2c885604d4e2fd2c50223</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxRdRsNRe_AQL3oTo_k2y3kq1NlAQbfS6TDa7NSXN1t304Lc3tqLO5Q3DjzcPHkKXlNxwrshtiFRQwZnMT9CIkYwlgil2-m8_R5MYN2QYzqkiYoSei5dVOfdha8MdnuJFYwME894YaPFbExvf4TJAF90BwYPgonMDY2u82kLb4hLC2vb43vbW9AN_gc4ctNFOfnSMXucP5WyRLJ8ei9l0mRimaJ9wl2UZTQlAThSItOKGpKLKuKtT6YiVlQAD1NbWOGbyXKZE1MIyVzMjCWN8jIqjb-1ho3eh2UL41B4afTj4sNYQ-sa0VjuZcU5Sx6wDAYrkFoigjjKXK1ZlZvC6Onrtgv_Y29jrjd-HboivWaoEkUrJfKCuj5QJPsZg3e9XSvR3A_qvAf4F7V53FQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694059958</pqid></control><display><type>article</type><title>IRSTFormer: A Hierarchical Vision Transformer for Infrared Small Target Detection</title><source>Publicly Available Content Database</source><creator>Chen, Gao ; Wang, Weihua ; Tan, Sirui</creator><creatorcontrib>Chen, Gao ; Wang, Weihua ; Tan, Sirui</creatorcontrib><description>Infrared small target detection occupies an important position in the infrared search and track system. The most common size of infrared images has developed to 640×512. The field-of-view (FOV) also increases significantly. As the result, there is more interference that hinders the detection of small targets in the image. However, the traditional model-driven methods do not have the capability of feature learning, resulting in poor adaptability to various scenes. Owing to the locality of convolution kernels, recent convolutional neural networks (CNN) cannot model the long-range dependency in the image to suppress false alarms. In this paper, we propose a hierarchical vision transformer-based method for infrared small target detection in larger size and FOV images of 640×512. Specifically, we design a hierarchical overlapped small patch transformer (HOSPT), instead of the CNN, to encode multi-scale features from the single-frame image. For the decoder, a top-down feature aggregation module (TFAM) is adopted to fuse features from adjacent scales. Furthermore, after analyzing existing loss functions, a simple yet effective combination is exploited to optimize the network convergence. Compared to other state-of-the-art methods, the normalized intersection-over-union (nIoU) on our IRST640 dataset and public SIRST dataset reaches 0.856 and 0.758. The detailed ablation experiments are conducted to validate the effectiveness and reasonability of each component in the method.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14143258</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ablation ; Adaptability ; Artificial neural networks ; Datasets ; deep learning ; Design ; False alarms ; Field of view ; Infrared imagery ; infrared small target detection ; Infrared tracking ; Methods ; Neural networks ; Optimization ; Remote sensing ; self-attention ; Sensors ; Target detection ; transformer</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-07, Vol.14 (14), p.3258</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3f777160aa809a46b3c064b73fd65f0e5b4aca1edecf2c885604d4e2fd2c50223</citedby><cites>FETCH-LOGICAL-c291t-3f777160aa809a46b3c064b73fd65f0e5b4aca1edecf2c885604d4e2fd2c50223</cites><orcidid>0000-0002-5646-9970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694059958/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694059958?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Wang, Weihua</creatorcontrib><creatorcontrib>Tan, Sirui</creatorcontrib><title>IRSTFormer: A Hierarchical Vision Transformer for Infrared Small Target Detection</title><title>Remote sensing (Basel, Switzerland)</title><description>Infrared small target detection occupies an important position in the infrared search and track system. The most common size of infrared images has developed to 640×512. The field-of-view (FOV) also increases significantly. As the result, there is more interference that hinders the detection of small targets in the image. However, the traditional model-driven methods do not have the capability of feature learning, resulting in poor adaptability to various scenes. Owing to the locality of convolution kernels, recent convolutional neural networks (CNN) cannot model the long-range dependency in the image to suppress false alarms. In this paper, we propose a hierarchical vision transformer-based method for infrared small target detection in larger size and FOV images of 640×512. Specifically, we design a hierarchical overlapped small patch transformer (HOSPT), instead of the CNN, to encode multi-scale features from the single-frame image. For the decoder, a top-down feature aggregation module (TFAM) is adopted to fuse features from adjacent scales. Furthermore, after analyzing existing loss functions, a simple yet effective combination is exploited to optimize the network convergence. Compared to other state-of-the-art methods, the normalized intersection-over-union (nIoU) on our IRST640 dataset and public SIRST dataset reaches 0.856 and 0.758. The detailed ablation experiments are conducted to validate the effectiveness and reasonability of each component in the method.</description><subject>Ablation</subject><subject>Adaptability</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Design</subject><subject>False alarms</subject><subject>Field of view</subject><subject>Infrared imagery</subject><subject>infrared small target detection</subject><subject>Infrared tracking</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>self-attention</subject><subject>Sensors</subject><subject>Target detection</subject><subject>transformer</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxRdRsNRe_AQL3oTo_k2y3kq1NlAQbfS6TDa7NSXN1t304Lc3tqLO5Q3DjzcPHkKXlNxwrshtiFRQwZnMT9CIkYwlgil2-m8_R5MYN2QYzqkiYoSei5dVOfdha8MdnuJFYwME894YaPFbExvf4TJAF90BwYPgonMDY2u82kLb4hLC2vb43vbW9AN_gc4ctNFOfnSMXucP5WyRLJ8ei9l0mRimaJ9wl2UZTQlAThSItOKGpKLKuKtT6YiVlQAD1NbWOGbyXKZE1MIyVzMjCWN8jIqjb-1ho3eh2UL41B4afTj4sNYQ-sa0VjuZcU5Sx6wDAYrkFoigjjKXK1ZlZvC6Onrtgv_Y29jrjd-HboivWaoEkUrJfKCuj5QJPsZg3e9XSvR3A_qvAf4F7V53FQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Chen, Gao</creator><creator>Wang, Weihua</creator><creator>Tan, Sirui</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5646-9970</orcidid></search><sort><creationdate>20220701</creationdate><title>IRSTFormer: A Hierarchical Vision Transformer for Infrared Small Target Detection</title><author>Chen, Gao ; Wang, Weihua ; Tan, Sirui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3f777160aa809a46b3c064b73fd65f0e5b4aca1edecf2c885604d4e2fd2c50223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Adaptability</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Design</topic><topic>False alarms</topic><topic>Field of view</topic><topic>Infrared imagery</topic><topic>infrared small target detection</topic><topic>Infrared tracking</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>self-attention</topic><topic>Sensors</topic><topic>Target detection</topic><topic>transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Wang, Weihua</creatorcontrib><creatorcontrib>Tan, Sirui</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gao</au><au>Wang, Weihua</au><au>Tan, Sirui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRSTFormer: A Hierarchical Vision Transformer for Infrared Small Target Detection</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>14</issue><spage>3258</spage><pages>3258-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Infrared small target detection occupies an important position in the infrared search and track system. The most common size of infrared images has developed to 640×512. The field-of-view (FOV) also increases significantly. As the result, there is more interference that hinders the detection of small targets in the image. However, the traditional model-driven methods do not have the capability of feature learning, resulting in poor adaptability to various scenes. Owing to the locality of convolution kernels, recent convolutional neural networks (CNN) cannot model the long-range dependency in the image to suppress false alarms. In this paper, we propose a hierarchical vision transformer-based method for infrared small target detection in larger size and FOV images of 640×512. Specifically, we design a hierarchical overlapped small patch transformer (HOSPT), instead of the CNN, to encode multi-scale features from the single-frame image. For the decoder, a top-down feature aggregation module (TFAM) is adopted to fuse features from adjacent scales. Furthermore, after analyzing existing loss functions, a simple yet effective combination is exploited to optimize the network convergence. Compared to other state-of-the-art methods, the normalized intersection-over-union (nIoU) on our IRST640 dataset and public SIRST dataset reaches 0.856 and 0.758. The detailed ablation experiments are conducted to validate the effectiveness and reasonability of each component in the method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14143258</doi><orcidid>https://orcid.org/0000-0002-5646-9970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2022-07, Vol.14 (14), p.3258
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f573306f2efa4a908ea041f12f892b7c
source Publicly Available Content Database
subjects Ablation
Adaptability
Artificial neural networks
Datasets
deep learning
Design
False alarms
Field of view
Infrared imagery
infrared small target detection
Infrared tracking
Methods
Neural networks
Optimization
Remote sensing
self-attention
Sensors
Target detection
transformer
title IRSTFormer: A Hierarchical Vision Transformer for Infrared Small Target Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRSTFormer:%20A%20Hierarchical%20Vision%20Transformer%20for%20Infrared%20Small%20Target%20Detection&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Chen,%20Gao&rft.date=2022-07-01&rft.volume=14&rft.issue=14&rft.spage=3258&rft.pages=3258-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14143258&rft_dat=%3Cproquest_doaj_%3E2694059958%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-3f777160aa809a46b3c064b73fd65f0e5b4aca1edecf2c885604d4e2fd2c50223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694059958&rft_id=info:pmid/&rfr_iscdi=true