Loading…
Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices
Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS)...
Saved in:
Published in: | Beilstein journal of nanotechnology 2018-03, Vol.9 (1), p.771-779 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883 |
container_end_page | 779 |
container_issue | 1 |
container_start_page | 771 |
container_title | Beilstein journal of nanotechnology |
container_volume | 9 |
creator | Do, T Anh Thu Ho, Truong Giang Bui, Thu Hoai Pham, Quang Ngan Giang, Hong Thai Do, Thi Thu Nguyen, Duc Van Tran, Dai Lam |
description | Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO
sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τ
= 9 s) and recovery time (τ
= 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures. |
doi_str_mv | 10.3762/bjnano.9.70 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f583a33ca90948989942be625c86d3d9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f583a33ca90948989942be625c86d3d9</doaj_id><sourcerecordid>2020484266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883</originalsourceid><addsrcrecordid>eNpdks1rFDEYhwdRbKk9eZeAF0FmzcdMPi5CKX4UCj2oFy_hneSd3VlmkzXJrPS_N3Zrac0l4c3Dw48fb9O8ZnQllOQfhm2AEFdmpeiz5pQzQ9uOa_n80fukOc95S-vpKNdGv2xOuJGUMqFPm9_fljSCw3Y_Q97F0GLYQHDoyTKXBIcpzlgI7qacpxhIHMnF0np0MUGp0M9wQ3JJiytLwkzGmMgaMskY8hTWBIIn-00s0UGB-bZMjng8TA7zq-bFCHPG8_v7rPnx-dP3y6_t9c2Xq8uL69Z1qi-tkkPPmULVcy-cYkZ5xtnonenRUU09Y4Maxs6AHChIT6WSwGTvR-6c11qcNVdHr4-wtfs07SDd2giTvRvEtLaQaq4Z7dhrAUI4MNR0tSdjOj6g5L3T0gtvquvj0bVfhh16h6E2ND-RPv0J08au48H2uue9EFXw7l6Q4q8Fc7G1V4fzDAHjki2nnHa641JW9O1_6DYuKdSq7iguqOasUu-PlEsx54TjQxhG7d_9sMf9sMYqWuk3j_M_sP-2QfwBlN65Aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020230821</pqid></control><display><type>article</type><title>Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Do, T Anh Thu ; Ho, Truong Giang ; Bui, Thu Hoai ; Pham, Quang Ngan ; Giang, Hong Thai ; Do, Thi Thu ; Nguyen, Duc Van ; Tran, Dai Lam</creator><creatorcontrib>Do, T Anh Thu ; Ho, Truong Giang ; Bui, Thu Hoai ; Pham, Quang Ngan ; Giang, Hong Thai ; Do, Thi Thu ; Nguyen, Duc Van ; Tran, Dai Lam</creatorcontrib><description>Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO
sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τ
= 9 s) and recovery time (τ
= 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.</description><identifier>ISSN: 2190-4286</identifier><identifier>EISSN: 2190-4286</identifier><identifier>DOI: 10.3762/bjnano.9.70</identifier><identifier>PMID: 29600138</identifier><language>eng</language><publisher>Germany: Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</publisher><subject>Au-decorated ZnO ; carrier dynamics ; Catalysis ; Charge transfer ; Decoration ; Detection ; Dielectric properties ; Electron microscopy ; Energy dispersive X ray spectroscopy ; Energy transmission ; Full Research Paper ; Gas sensors ; Gases ; Glass substrates ; Gold ; Image transmission ; Lasers ; Nanoparticles ; Nanoscience ; Nanotechnology ; Nitrogen dioxide ; photocatalyst ; Photochemistry ; Photodegradation ; Photoluminescence ; Photovoltaic cells ; Recovery time ; Sensitivity enhancement ; Sensors ; Spectrum analysis ; Spheres ; SPR effect ; Ultraviolet emission ; Zinc oxide</subject><ispartof>Beilstein journal of nanotechnology, 2018-03, Vol.9 (1), p.771-779</ispartof><rights>Copyright © 2018, Do et al.; licensee Beilstein-Institut. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2018, Do et al. 2018 Do et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883</citedby><cites>FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883</cites><orcidid>0000-0002-1710-7344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2020230821/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2020230821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29600138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Do, T Anh Thu</creatorcontrib><creatorcontrib>Ho, Truong Giang</creatorcontrib><creatorcontrib>Bui, Thu Hoai</creatorcontrib><creatorcontrib>Pham, Quang Ngan</creatorcontrib><creatorcontrib>Giang, Hong Thai</creatorcontrib><creatorcontrib>Do, Thi Thu</creatorcontrib><creatorcontrib>Nguyen, Duc Van</creatorcontrib><creatorcontrib>Tran, Dai Lam</creatorcontrib><title>Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices</title><title>Beilstein journal of nanotechnology</title><addtitle>Beilstein J Nanotechnol</addtitle><description>Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO
sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τ
= 9 s) and recovery time (τ
= 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.</description><subject>Au-decorated ZnO</subject><subject>carrier dynamics</subject><subject>Catalysis</subject><subject>Charge transfer</subject><subject>Decoration</subject><subject>Detection</subject><subject>Dielectric properties</subject><subject>Electron microscopy</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Energy transmission</subject><subject>Full Research Paper</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Glass substrates</subject><subject>Gold</subject><subject>Image transmission</subject><subject>Lasers</subject><subject>Nanoparticles</subject><subject>Nanoscience</subject><subject>Nanotechnology</subject><subject>Nitrogen dioxide</subject><subject>photocatalyst</subject><subject>Photochemistry</subject><subject>Photodegradation</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Recovery time</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Spheres</subject><subject>SPR effect</subject><subject>Ultraviolet emission</subject><subject>Zinc oxide</subject><issn>2190-4286</issn><issn>2190-4286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1rFDEYhwdRbKk9eZeAF0FmzcdMPi5CKX4UCj2oFy_hneSd3VlmkzXJrPS_N3Zrac0l4c3Dw48fb9O8ZnQllOQfhm2AEFdmpeiz5pQzQ9uOa_n80fukOc95S-vpKNdGv2xOuJGUMqFPm9_fljSCw3Y_Q97F0GLYQHDoyTKXBIcpzlgI7qacpxhIHMnF0np0MUGp0M9wQ3JJiytLwkzGmMgaMskY8hTWBIIn-00s0UGB-bZMjng8TA7zq-bFCHPG8_v7rPnx-dP3y6_t9c2Xq8uL69Z1qi-tkkPPmULVcy-cYkZ5xtnonenRUU09Y4Maxs6AHChIT6WSwGTvR-6c11qcNVdHr4-wtfs07SDd2giTvRvEtLaQaq4Z7dhrAUI4MNR0tSdjOj6g5L3T0gtvquvj0bVfhh16h6E2ND-RPv0J08au48H2uue9EFXw7l6Q4q8Fc7G1V4fzDAHjki2nnHa641JW9O1_6DYuKdSq7iguqOasUu-PlEsx54TjQxhG7d_9sMf9sMYqWuk3j_M_sP-2QfwBlN65Aw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Do, T Anh Thu</creator><creator>Ho, Truong Giang</creator><creator>Bui, Thu Hoai</creator><creator>Pham, Quang Ngan</creator><creator>Giang, Hong Thai</creator><creator>Do, Thi Thu</creator><creator>Nguyen, Duc Van</creator><creator>Tran, Dai Lam</creator><general>Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</general><general>Beilstein-Institut</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1710-7344</orcidid></search><sort><creationdate>20180301</creationdate><title>Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices</title><author>Do, T Anh Thu ; Ho, Truong Giang ; Bui, Thu Hoai ; Pham, Quang Ngan ; Giang, Hong Thai ; Do, Thi Thu ; Nguyen, Duc Van ; Tran, Dai Lam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Au-decorated ZnO</topic><topic>carrier dynamics</topic><topic>Catalysis</topic><topic>Charge transfer</topic><topic>Decoration</topic><topic>Detection</topic><topic>Dielectric properties</topic><topic>Electron microscopy</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Energy transmission</topic><topic>Full Research Paper</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Glass substrates</topic><topic>Gold</topic><topic>Image transmission</topic><topic>Lasers</topic><topic>Nanoparticles</topic><topic>Nanoscience</topic><topic>Nanotechnology</topic><topic>Nitrogen dioxide</topic><topic>photocatalyst</topic><topic>Photochemistry</topic><topic>Photodegradation</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Recovery time</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Spheres</topic><topic>SPR effect</topic><topic>Ultraviolet emission</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, T Anh Thu</creatorcontrib><creatorcontrib>Ho, Truong Giang</creatorcontrib><creatorcontrib>Bui, Thu Hoai</creatorcontrib><creatorcontrib>Pham, Quang Ngan</creatorcontrib><creatorcontrib>Giang, Hong Thai</creatorcontrib><creatorcontrib>Do, Thi Thu</creatorcontrib><creatorcontrib>Nguyen, Duc Van</creatorcontrib><creatorcontrib>Tran, Dai Lam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Beilstein journal of nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, T Anh Thu</au><au>Ho, Truong Giang</au><au>Bui, Thu Hoai</au><au>Pham, Quang Ngan</au><au>Giang, Hong Thai</au><au>Do, Thi Thu</au><au>Nguyen, Duc Van</au><au>Tran, Dai Lam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices</atitle><jtitle>Beilstein journal of nanotechnology</jtitle><addtitle>Beilstein J Nanotechnol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>771</spage><epage>779</epage><pages>771-779</pages><issn>2190-4286</issn><eissn>2190-4286</eissn><abstract>Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO
sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τ
= 9 s) and recovery time (τ
= 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.</abstract><cop>Germany</cop><pub>Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</pub><pmid>29600138</pmid><doi>10.3762/bjnano.9.70</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1710-7344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-4286 |
ispartof | Beilstein journal of nanotechnology, 2018-03, Vol.9 (1), p.771-779 |
issn | 2190-4286 2190-4286 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f583a33ca90948989942be625c86d3d9 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Au-decorated ZnO carrier dynamics Catalysis Charge transfer Decoration Detection Dielectric properties Electron microscopy Energy dispersive X ray spectroscopy Energy transmission Full Research Paper Gas sensors Gases Glass substrates Gold Image transmission Lasers Nanoparticles Nanoscience Nanotechnology Nitrogen dioxide photocatalyst Photochemistry Photodegradation Photoluminescence Photovoltaic cells Recovery time Sensitivity enhancement Sensors Spectrum analysis Spheres SPR effect Ultraviolet emission Zinc oxide |
title | Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-plasmon-enhanced%20ultraviolet%20emission%20of%20Au-decorated%20ZnO%20structures%20for%20gas%20sensing%20and%20photocatalytic%20devices&rft.jtitle=Beilstein%20journal%20of%20nanotechnology&rft.au=Do,%20T%20Anh%20Thu&rft.date=2018-03-01&rft.volume=9&rft.issue=1&rft.spage=771&rft.epage=779&rft.pages=771-779&rft.issn=2190-4286&rft.eissn=2190-4286&rft_id=info:doi/10.3762/bjnano.9.70&rft_dat=%3Cproquest_doaj_%3E2020484266%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2020230821&rft_id=info:pmid/29600138&rfr_iscdi=true |