Loading…

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS)...

Full description

Saved in:
Bibliographic Details
Published in:Beilstein journal of nanotechnology 2018-03, Vol.9 (1), p.771-779
Main Authors: Do, T Anh Thu, Ho, Truong Giang, Bui, Thu Hoai, Pham, Quang Ngan, Giang, Hong Thai, Do, Thi Thu, Nguyen, Duc Van, Tran, Dai Lam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883
cites cdi_FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883
container_end_page 779
container_issue 1
container_start_page 771
container_title Beilstein journal of nanotechnology
container_volume 9
creator Do, T Anh Thu
Ho, Truong Giang
Bui, Thu Hoai
Pham, Quang Ngan
Giang, Hong Thai
Do, Thi Thu
Nguyen, Duc Van
Tran, Dai Lam
description Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τ = 9 s) and recovery time (τ = 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.
doi_str_mv 10.3762/bjnano.9.70
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f583a33ca90948989942be625c86d3d9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f583a33ca90948989942be625c86d3d9</doaj_id><sourcerecordid>2020484266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883</originalsourceid><addsrcrecordid>eNpdks1rFDEYhwdRbKk9eZeAF0FmzcdMPi5CKX4UCj2oFy_hneSd3VlmkzXJrPS_N3Zrac0l4c3Dw48fb9O8ZnQllOQfhm2AEFdmpeiz5pQzQ9uOa_n80fukOc95S-vpKNdGv2xOuJGUMqFPm9_fljSCw3Y_Q97F0GLYQHDoyTKXBIcpzlgI7qacpxhIHMnF0np0MUGp0M9wQ3JJiytLwkzGmMgaMskY8hTWBIIn-00s0UGB-bZMjng8TA7zq-bFCHPG8_v7rPnx-dP3y6_t9c2Xq8uL69Z1qi-tkkPPmULVcy-cYkZ5xtnonenRUU09Y4Maxs6AHChIT6WSwGTvR-6c11qcNVdHr4-wtfs07SDd2giTvRvEtLaQaq4Z7dhrAUI4MNR0tSdjOj6g5L3T0gtvquvj0bVfhh16h6E2ND-RPv0J08au48H2uue9EFXw7l6Q4q8Fc7G1V4fzDAHjki2nnHa641JW9O1_6DYuKdSq7iguqOasUu-PlEsx54TjQxhG7d_9sMf9sMYqWuk3j_M_sP-2QfwBlN65Aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020230821</pqid></control><display><type>article</type><title>Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Do, T Anh Thu ; Ho, Truong Giang ; Bui, Thu Hoai ; Pham, Quang Ngan ; Giang, Hong Thai ; Do, Thi Thu ; Nguyen, Duc Van ; Tran, Dai Lam</creator><creatorcontrib>Do, T Anh Thu ; Ho, Truong Giang ; Bui, Thu Hoai ; Pham, Quang Ngan ; Giang, Hong Thai ; Do, Thi Thu ; Nguyen, Duc Van ; Tran, Dai Lam</creatorcontrib><description>Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τ = 9 s) and recovery time (τ = 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.</description><identifier>ISSN: 2190-4286</identifier><identifier>EISSN: 2190-4286</identifier><identifier>DOI: 10.3762/bjnano.9.70</identifier><identifier>PMID: 29600138</identifier><language>eng</language><publisher>Germany: Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</publisher><subject>Au-decorated ZnO ; carrier dynamics ; Catalysis ; Charge transfer ; Decoration ; Detection ; Dielectric properties ; Electron microscopy ; Energy dispersive X ray spectroscopy ; Energy transmission ; Full Research Paper ; Gas sensors ; Gases ; Glass substrates ; Gold ; Image transmission ; Lasers ; Nanoparticles ; Nanoscience ; Nanotechnology ; Nitrogen dioxide ; photocatalyst ; Photochemistry ; Photodegradation ; Photoluminescence ; Photovoltaic cells ; Recovery time ; Sensitivity enhancement ; Sensors ; Spectrum analysis ; Spheres ; SPR effect ; Ultraviolet emission ; Zinc oxide</subject><ispartof>Beilstein journal of nanotechnology, 2018-03, Vol.9 (1), p.771-779</ispartof><rights>Copyright © 2018, Do et al.; licensee Beilstein-Institut. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2018, Do et al. 2018 Do et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883</citedby><cites>FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883</cites><orcidid>0000-0002-1710-7344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2020230821/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2020230821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29600138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Do, T Anh Thu</creatorcontrib><creatorcontrib>Ho, Truong Giang</creatorcontrib><creatorcontrib>Bui, Thu Hoai</creatorcontrib><creatorcontrib>Pham, Quang Ngan</creatorcontrib><creatorcontrib>Giang, Hong Thai</creatorcontrib><creatorcontrib>Do, Thi Thu</creatorcontrib><creatorcontrib>Nguyen, Duc Van</creatorcontrib><creatorcontrib>Tran, Dai Lam</creatorcontrib><title>Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices</title><title>Beilstein journal of nanotechnology</title><addtitle>Beilstein J Nanotechnol</addtitle><description>Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τ = 9 s) and recovery time (τ = 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.</description><subject>Au-decorated ZnO</subject><subject>carrier dynamics</subject><subject>Catalysis</subject><subject>Charge transfer</subject><subject>Decoration</subject><subject>Detection</subject><subject>Dielectric properties</subject><subject>Electron microscopy</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Energy transmission</subject><subject>Full Research Paper</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Glass substrates</subject><subject>Gold</subject><subject>Image transmission</subject><subject>Lasers</subject><subject>Nanoparticles</subject><subject>Nanoscience</subject><subject>Nanotechnology</subject><subject>Nitrogen dioxide</subject><subject>photocatalyst</subject><subject>Photochemistry</subject><subject>Photodegradation</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Recovery time</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Spheres</subject><subject>SPR effect</subject><subject>Ultraviolet emission</subject><subject>Zinc oxide</subject><issn>2190-4286</issn><issn>2190-4286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1rFDEYhwdRbKk9eZeAF0FmzcdMPi5CKX4UCj2oFy_hneSd3VlmkzXJrPS_N3Zrac0l4c3Dw48fb9O8ZnQllOQfhm2AEFdmpeiz5pQzQ9uOa_n80fukOc95S-vpKNdGv2xOuJGUMqFPm9_fljSCw3Y_Q97F0GLYQHDoyTKXBIcpzlgI7qacpxhIHMnF0np0MUGp0M9wQ3JJiytLwkzGmMgaMskY8hTWBIIn-00s0UGB-bZMjng8TA7zq-bFCHPG8_v7rPnx-dP3y6_t9c2Xq8uL69Z1qi-tkkPPmULVcy-cYkZ5xtnonenRUU09Y4Maxs6AHChIT6WSwGTvR-6c11qcNVdHr4-wtfs07SDd2giTvRvEtLaQaq4Z7dhrAUI4MNR0tSdjOj6g5L3T0gtvquvj0bVfhh16h6E2ND-RPv0J08au48H2uue9EFXw7l6Q4q8Fc7G1V4fzDAHjki2nnHa641JW9O1_6DYuKdSq7iguqOasUu-PlEsx54TjQxhG7d_9sMf9sMYqWuk3j_M_sP-2QfwBlN65Aw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Do, T Anh Thu</creator><creator>Ho, Truong Giang</creator><creator>Bui, Thu Hoai</creator><creator>Pham, Quang Ngan</creator><creator>Giang, Hong Thai</creator><creator>Do, Thi Thu</creator><creator>Nguyen, Duc Van</creator><creator>Tran, Dai Lam</creator><general>Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</general><general>Beilstein-Institut</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1710-7344</orcidid></search><sort><creationdate>20180301</creationdate><title>Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices</title><author>Do, T Anh Thu ; Ho, Truong Giang ; Bui, Thu Hoai ; Pham, Quang Ngan ; Giang, Hong Thai ; Do, Thi Thu ; Nguyen, Duc Van ; Tran, Dai Lam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Au-decorated ZnO</topic><topic>carrier dynamics</topic><topic>Catalysis</topic><topic>Charge transfer</topic><topic>Decoration</topic><topic>Detection</topic><topic>Dielectric properties</topic><topic>Electron microscopy</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Energy transmission</topic><topic>Full Research Paper</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Glass substrates</topic><topic>Gold</topic><topic>Image transmission</topic><topic>Lasers</topic><topic>Nanoparticles</topic><topic>Nanoscience</topic><topic>Nanotechnology</topic><topic>Nitrogen dioxide</topic><topic>photocatalyst</topic><topic>Photochemistry</topic><topic>Photodegradation</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Recovery time</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Spheres</topic><topic>SPR effect</topic><topic>Ultraviolet emission</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, T Anh Thu</creatorcontrib><creatorcontrib>Ho, Truong Giang</creatorcontrib><creatorcontrib>Bui, Thu Hoai</creatorcontrib><creatorcontrib>Pham, Quang Ngan</creatorcontrib><creatorcontrib>Giang, Hong Thai</creatorcontrib><creatorcontrib>Do, Thi Thu</creatorcontrib><creatorcontrib>Nguyen, Duc Van</creatorcontrib><creatorcontrib>Tran, Dai Lam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Beilstein journal of nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, T Anh Thu</au><au>Ho, Truong Giang</au><au>Bui, Thu Hoai</au><au>Pham, Quang Ngan</au><au>Giang, Hong Thai</au><au>Do, Thi Thu</au><au>Nguyen, Duc Van</au><au>Tran, Dai Lam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices</atitle><jtitle>Beilstein journal of nanotechnology</jtitle><addtitle>Beilstein J Nanotechnol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>771</spage><epage>779</epage><pages>771-779</pages><issn>2190-4286</issn><eissn>2190-4286</eissn><abstract>Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τ = 9 s) and recovery time (τ = 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.</abstract><cop>Germany</cop><pub>Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</pub><pmid>29600138</pmid><doi>10.3762/bjnano.9.70</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1710-7344</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-4286
ispartof Beilstein journal of nanotechnology, 2018-03, Vol.9 (1), p.771-779
issn 2190-4286
2190-4286
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f583a33ca90948989942be625c86d3d9
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Au-decorated ZnO
carrier dynamics
Catalysis
Charge transfer
Decoration
Detection
Dielectric properties
Electron microscopy
Energy dispersive X ray spectroscopy
Energy transmission
Full Research Paper
Gas sensors
Gases
Glass substrates
Gold
Image transmission
Lasers
Nanoparticles
Nanoscience
Nanotechnology
Nitrogen dioxide
photocatalyst
Photochemistry
Photodegradation
Photoluminescence
Photovoltaic cells
Recovery time
Sensitivity enhancement
Sensors
Spectrum analysis
Spheres
SPR effect
Ultraviolet emission
Zinc oxide
title Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-plasmon-enhanced%20ultraviolet%20emission%20of%20Au-decorated%20ZnO%20structures%20for%20gas%20sensing%20and%20photocatalytic%20devices&rft.jtitle=Beilstein%20journal%20of%20nanotechnology&rft.au=Do,%20T%20Anh%20Thu&rft.date=2018-03-01&rft.volume=9&rft.issue=1&rft.spage=771&rft.epage=779&rft.pages=771-779&rft.issn=2190-4286&rft.eissn=2190-4286&rft_id=info:doi/10.3762/bjnano.9.70&rft_dat=%3Cproquest_doaj_%3E2020484266%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-76b5217e752d3c7197d121fdc95ec080d11b7bf49a6b0a6d0676a165df2ccd883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2020230821&rft_id=info:pmid/29600138&rfr_iscdi=true