Loading…

WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases

Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it diff...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2018-07, Vol.19 (1), p.277-277, Article 277
Main Authors: Carmelo, Victor A O, Kogelman, Lisette J A, Madsen, Majbritt Busk, Kadarmideen, Haja N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23
cites cdi_FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23
container_end_page 277
container_issue 1
container_start_page 277
container_title BMC bioinformatics
container_volume 19
creator Carmelo, Victor A O
Kogelman, Lisette J A
Madsen, Majbritt Busk
Kadarmideen, Haja N
description Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package. The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided. The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions.
doi_str_mv 10.1186/s12859-018-2291-2
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f58d90d21f394256a55d1896a14a812b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A556986424</galeid><doaj_id>oai_doaj_org_article_f58d90d21f394256a55d1896a14a812b</doaj_id><sourcerecordid>A556986424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEoqXwAFxQJC5wSLEdO3EuSFUFdKVKSC2IozVrj7desvFiO1DeHmd3WTUI-WDL_uYfz8xfFC8pOadUNu8iZVJ0FaGyYqyjFXtUnFLe5gMl4vGD80nxLMY1IbSVRDwtTmpCGl7L-rS4-7a4vapuqhJKCzGVMJgSrXXa4ZDK5H1fWh9K7YeYwqiT80PpbYlbFxMkp8sB0y8fvscDttn2eF-mAC7FnZhxESFifF48sdBHfHHYz4qvHz98ubyqrj9_WlxeXFdadDxVkuaPsZYThqSRbb3kuCScc4PaMFJb1qAQpGbCdAyAA7EGLABOOJea1WfFYq9rPKzVNrgNhN_Kg1O7Cx9WCkL-eI_KCmk6Yhi1dceZaEAIQ2XXAOUgKVtmrfd7re243KDRuSUB-pno_GVwd2rlf6qGNF3LeBZ4cxAI_seIMamNixr7Hgb0Y1SMSCp4y-WEvv4HXfsxDLlVmeoIZ7LN9R-pFeQC3GB9zqsnUXUhRNPJhu_Snv-HysvgxuVRonX5fhbwdhaQmYT3aQVjjGpxezNn6Z7VwccY0B77QYmabKn2tlTZlmqypZqG8uphI48Rf31Y_wEYndqX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090428720</pqid></control><display><type>article</type><title>WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Carmelo, Victor A O ; Kogelman, Lisette J A ; Madsen, Majbritt Busk ; Kadarmideen, Haja N</creator><creatorcontrib>Carmelo, Victor A O ; Kogelman, Lisette J A ; Madsen, Majbritt Busk ; Kadarmideen, Haja N</creatorcontrib><description>Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package. The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided. The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-018-2291-2</identifier><identifier>PMID: 30064383</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Bioinformatics ; Complex traits ; Complexity ; Computational biology ; Computer applications ; Data interpretation ; Data processing ; Diabetes ; Epistasis ; Gene expression ; Generalized linear models ; Genetic diversity ; Genetic research ; Genetic variance ; Genetics ; Genome-wide association studies ; Genomes ; Genomics ; Genotype &amp; phenotype ; GWAS ; Inflammatory bowel disease ; Linkage disequilibrium ; Methods ; Molecular genetics ; Networks ; Parallel processing ; Scientific software ; Single-nucleotide polymorphism ; Software ; Statistical models ; Studies ; WGCNA</subject><ispartof>BMC bioinformatics, 2018-07, Vol.19 (1), p.277-277, Article 277</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23</citedby><cites>FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23</cites><orcidid>0000-0001-6294-382X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069724/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2090428720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30064383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carmelo, Victor A O</creatorcontrib><creatorcontrib>Kogelman, Lisette J A</creatorcontrib><creatorcontrib>Madsen, Majbritt Busk</creatorcontrib><creatorcontrib>Kadarmideen, Haja N</creatorcontrib><title>WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package. The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided. The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions.</description><subject>Bioinformatics</subject><subject>Complex traits</subject><subject>Complexity</subject><subject>Computational biology</subject><subject>Computer applications</subject><subject>Data interpretation</subject><subject>Data processing</subject><subject>Diabetes</subject><subject>Epistasis</subject><subject>Gene expression</subject><subject>Generalized linear models</subject><subject>Genetic diversity</subject><subject>Genetic research</subject><subject>Genetic variance</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>GWAS</subject><subject>Inflammatory bowel disease</subject><subject>Linkage disequilibrium</subject><subject>Methods</subject><subject>Molecular genetics</subject><subject>Networks</subject><subject>Parallel processing</subject><subject>Scientific software</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Statistical models</subject><subject>Studies</subject><subject>WGCNA</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEoqXwAFxQJC5wSLEdO3EuSFUFdKVKSC2IozVrj7desvFiO1DeHmd3WTUI-WDL_uYfz8xfFC8pOadUNu8iZVJ0FaGyYqyjFXtUnFLe5gMl4vGD80nxLMY1IbSVRDwtTmpCGl7L-rS4-7a4vapuqhJKCzGVMJgSrXXa4ZDK5H1fWh9K7YeYwqiT80PpbYlbFxMkp8sB0y8fvscDttn2eF-mAC7FnZhxESFifF48sdBHfHHYz4qvHz98ubyqrj9_WlxeXFdadDxVkuaPsZYThqSRbb3kuCScc4PaMFJb1qAQpGbCdAyAA7EGLABOOJea1WfFYq9rPKzVNrgNhN_Kg1O7Cx9WCkL-eI_KCmk6Yhi1dceZaEAIQ2XXAOUgKVtmrfd7re243KDRuSUB-pno_GVwd2rlf6qGNF3LeBZ4cxAI_seIMamNixr7Hgb0Y1SMSCp4y-WEvv4HXfsxDLlVmeoIZ7LN9R-pFeQC3GB9zqsnUXUhRNPJhu_Snv-HysvgxuVRonX5fhbwdhaQmYT3aQVjjGpxezNn6Z7VwccY0B77QYmabKn2tlTZlmqypZqG8uphI48Rf31Y_wEYndqX</recordid><startdate>20180731</startdate><enddate>20180731</enddate><creator>Carmelo, Victor A O</creator><creator>Kogelman, Lisette J A</creator><creator>Madsen, Majbritt Busk</creator><creator>Kadarmideen, Haja N</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6294-382X</orcidid></search><sort><creationdate>20180731</creationdate><title>WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases</title><author>Carmelo, Victor A O ; Kogelman, Lisette J A ; Madsen, Majbritt Busk ; Kadarmideen, Haja N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bioinformatics</topic><topic>Complex traits</topic><topic>Complexity</topic><topic>Computational biology</topic><topic>Computer applications</topic><topic>Data interpretation</topic><topic>Data processing</topic><topic>Diabetes</topic><topic>Epistasis</topic><topic>Gene expression</topic><topic>Generalized linear models</topic><topic>Genetic diversity</topic><topic>Genetic research</topic><topic>Genetic variance</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>GWAS</topic><topic>Inflammatory bowel disease</topic><topic>Linkage disequilibrium</topic><topic>Methods</topic><topic>Molecular genetics</topic><topic>Networks</topic><topic>Parallel processing</topic><topic>Scientific software</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Statistical models</topic><topic>Studies</topic><topic>WGCNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carmelo, Victor A O</creatorcontrib><creatorcontrib>Kogelman, Lisette J A</creatorcontrib><creatorcontrib>Madsen, Majbritt Busk</creatorcontrib><creatorcontrib>Kadarmideen, Haja N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carmelo, Victor A O</au><au>Kogelman, Lisette J A</au><au>Madsen, Majbritt Busk</au><au>Kadarmideen, Haja N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2018-07-31</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>277</spage><epage>277</epage><pages>277-277</pages><artnum>277</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package. The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided. The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>30064383</pmid><doi>10.1186/s12859-018-2291-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6294-382X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2018-07, Vol.19 (1), p.277-277, Article 277
issn 1471-2105
1471-2105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f58d90d21f394256a55d1896a14a812b
source Publicly Available Content (ProQuest); PubMed Central
subjects Bioinformatics
Complex traits
Complexity
Computational biology
Computer applications
Data interpretation
Data processing
Diabetes
Epistasis
Gene expression
Generalized linear models
Genetic diversity
Genetic research
Genetic variance
Genetics
Genome-wide association studies
Genomes
Genomics
Genotype & phenotype
GWAS
Inflammatory bowel disease
Linkage disequilibrium
Methods
Molecular genetics
Networks
Parallel processing
Scientific software
Single-nucleotide polymorphism
Software
Statistical models
Studies
WGCNA
title WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WISH-R-%20a%20fast%20and%20efficient%20tool%20for%20construction%20of%20epistatic%20networks%20for%20complex%20traits%20and%20diseases&rft.jtitle=BMC%20bioinformatics&rft.au=Carmelo,%20Victor%20A%20O&rft.date=2018-07-31&rft.volume=19&rft.issue=1&rft.spage=277&rft.epage=277&rft.pages=277-277&rft.artnum=277&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-018-2291-2&rft_dat=%3Cgale_doaj_%3EA556986424%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090428720&rft_id=info:pmid/30064383&rft_galeid=A556986424&rfr_iscdi=true