Loading…
WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases
Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it diff...
Saved in:
Published in: | BMC bioinformatics 2018-07, Vol.19 (1), p.277-277, Article 277 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23 |
container_end_page | 277 |
container_issue | 1 |
container_start_page | 277 |
container_title | BMC bioinformatics |
container_volume | 19 |
creator | Carmelo, Victor A O Kogelman, Lisette J A Madsen, Majbritt Busk Kadarmideen, Haja N |
description | Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package.
The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided.
The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions. |
doi_str_mv | 10.1186/s12859-018-2291-2 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f58d90d21f394256a55d1896a14a812b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A556986424</galeid><doaj_id>oai_doaj_org_article_f58d90d21f394256a55d1896a14a812b</doaj_id><sourcerecordid>A556986424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEoqXwAFxQJC5wSLEdO3EuSFUFdKVKSC2IozVrj7desvFiO1DeHmd3WTUI-WDL_uYfz8xfFC8pOadUNu8iZVJ0FaGyYqyjFXtUnFLe5gMl4vGD80nxLMY1IbSVRDwtTmpCGl7L-rS4-7a4vapuqhJKCzGVMJgSrXXa4ZDK5H1fWh9K7YeYwqiT80PpbYlbFxMkp8sB0y8fvscDttn2eF-mAC7FnZhxESFifF48sdBHfHHYz4qvHz98ubyqrj9_WlxeXFdadDxVkuaPsZYThqSRbb3kuCScc4PaMFJb1qAQpGbCdAyAA7EGLABOOJea1WfFYq9rPKzVNrgNhN_Kg1O7Cx9WCkL-eI_KCmk6Yhi1dceZaEAIQ2XXAOUgKVtmrfd7re243KDRuSUB-pno_GVwd2rlf6qGNF3LeBZ4cxAI_seIMamNixr7Hgb0Y1SMSCp4y-WEvv4HXfsxDLlVmeoIZ7LN9R-pFeQC3GB9zqsnUXUhRNPJhu_Snv-HysvgxuVRonX5fhbwdhaQmYT3aQVjjGpxezNn6Z7VwccY0B77QYmabKn2tlTZlmqypZqG8uphI48Rf31Y_wEYndqX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090428720</pqid></control><display><type>article</type><title>WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Carmelo, Victor A O ; Kogelman, Lisette J A ; Madsen, Majbritt Busk ; Kadarmideen, Haja N</creator><creatorcontrib>Carmelo, Victor A O ; Kogelman, Lisette J A ; Madsen, Majbritt Busk ; Kadarmideen, Haja N</creatorcontrib><description>Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package.
The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided.
The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-018-2291-2</identifier><identifier>PMID: 30064383</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Bioinformatics ; Complex traits ; Complexity ; Computational biology ; Computer applications ; Data interpretation ; Data processing ; Diabetes ; Epistasis ; Gene expression ; Generalized linear models ; Genetic diversity ; Genetic research ; Genetic variance ; Genetics ; Genome-wide association studies ; Genomes ; Genomics ; Genotype & phenotype ; GWAS ; Inflammatory bowel disease ; Linkage disequilibrium ; Methods ; Molecular genetics ; Networks ; Parallel processing ; Scientific software ; Single-nucleotide polymorphism ; Software ; Statistical models ; Studies ; WGCNA</subject><ispartof>BMC bioinformatics, 2018-07, Vol.19 (1), p.277-277, Article 277</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23</citedby><cites>FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23</cites><orcidid>0000-0001-6294-382X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069724/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2090428720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30064383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carmelo, Victor A O</creatorcontrib><creatorcontrib>Kogelman, Lisette J A</creatorcontrib><creatorcontrib>Madsen, Majbritt Busk</creatorcontrib><creatorcontrib>Kadarmideen, Haja N</creatorcontrib><title>WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package.
The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided.
The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions.</description><subject>Bioinformatics</subject><subject>Complex traits</subject><subject>Complexity</subject><subject>Computational biology</subject><subject>Computer applications</subject><subject>Data interpretation</subject><subject>Data processing</subject><subject>Diabetes</subject><subject>Epistasis</subject><subject>Gene expression</subject><subject>Generalized linear models</subject><subject>Genetic diversity</subject><subject>Genetic research</subject><subject>Genetic variance</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>GWAS</subject><subject>Inflammatory bowel disease</subject><subject>Linkage disequilibrium</subject><subject>Methods</subject><subject>Molecular genetics</subject><subject>Networks</subject><subject>Parallel processing</subject><subject>Scientific software</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Statistical models</subject><subject>Studies</subject><subject>WGCNA</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEoqXwAFxQJC5wSLEdO3EuSFUFdKVKSC2IozVrj7desvFiO1DeHmd3WTUI-WDL_uYfz8xfFC8pOadUNu8iZVJ0FaGyYqyjFXtUnFLe5gMl4vGD80nxLMY1IbSVRDwtTmpCGl7L-rS4-7a4vapuqhJKCzGVMJgSrXXa4ZDK5H1fWh9K7YeYwqiT80PpbYlbFxMkp8sB0y8fvscDttn2eF-mAC7FnZhxESFifF48sdBHfHHYz4qvHz98ubyqrj9_WlxeXFdadDxVkuaPsZYThqSRbb3kuCScc4PaMFJb1qAQpGbCdAyAA7EGLABOOJea1WfFYq9rPKzVNrgNhN_Kg1O7Cx9WCkL-eI_KCmk6Yhi1dceZaEAIQ2XXAOUgKVtmrfd7re243KDRuSUB-pno_GVwd2rlf6qGNF3LeBZ4cxAI_seIMamNixr7Hgb0Y1SMSCp4y-WEvv4HXfsxDLlVmeoIZ7LN9R-pFeQC3GB9zqsnUXUhRNPJhu_Snv-HysvgxuVRonX5fhbwdhaQmYT3aQVjjGpxezNn6Z7VwccY0B77QYmabKn2tlTZlmqypZqG8uphI48Rf31Y_wEYndqX</recordid><startdate>20180731</startdate><enddate>20180731</enddate><creator>Carmelo, Victor A O</creator><creator>Kogelman, Lisette J A</creator><creator>Madsen, Majbritt Busk</creator><creator>Kadarmideen, Haja N</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6294-382X</orcidid></search><sort><creationdate>20180731</creationdate><title>WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases</title><author>Carmelo, Victor A O ; Kogelman, Lisette J A ; Madsen, Majbritt Busk ; Kadarmideen, Haja N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bioinformatics</topic><topic>Complex traits</topic><topic>Complexity</topic><topic>Computational biology</topic><topic>Computer applications</topic><topic>Data interpretation</topic><topic>Data processing</topic><topic>Diabetes</topic><topic>Epistasis</topic><topic>Gene expression</topic><topic>Generalized linear models</topic><topic>Genetic diversity</topic><topic>Genetic research</topic><topic>Genetic variance</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>GWAS</topic><topic>Inflammatory bowel disease</topic><topic>Linkage disequilibrium</topic><topic>Methods</topic><topic>Molecular genetics</topic><topic>Networks</topic><topic>Parallel processing</topic><topic>Scientific software</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Statistical models</topic><topic>Studies</topic><topic>WGCNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carmelo, Victor A O</creatorcontrib><creatorcontrib>Kogelman, Lisette J A</creatorcontrib><creatorcontrib>Madsen, Majbritt Busk</creatorcontrib><creatorcontrib>Kadarmideen, Haja N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carmelo, Victor A O</au><au>Kogelman, Lisette J A</au><au>Madsen, Majbritt Busk</au><au>Kadarmideen, Haja N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2018-07-31</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>277</spage><epage>277</epage><pages>277-277</pages><artnum>277</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package.
The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided.
The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>30064383</pmid><doi>10.1186/s12859-018-2291-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6294-382X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2018-07, Vol.19 (1), p.277-277, Article 277 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f58d90d21f394256a55d1896a14a812b |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Bioinformatics Complex traits Complexity Computational biology Computer applications Data interpretation Data processing Diabetes Epistasis Gene expression Generalized linear models Genetic diversity Genetic research Genetic variance Genetics Genome-wide association studies Genomes Genomics Genotype & phenotype GWAS Inflammatory bowel disease Linkage disequilibrium Methods Molecular genetics Networks Parallel processing Scientific software Single-nucleotide polymorphism Software Statistical models Studies WGCNA |
title | WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WISH-R-%20a%20fast%20and%20efficient%20tool%20for%20construction%20of%20epistatic%20networks%20for%20complex%20traits%20and%20diseases&rft.jtitle=BMC%20bioinformatics&rft.au=Carmelo,%20Victor%20A%20O&rft.date=2018-07-31&rft.volume=19&rft.issue=1&rft.spage=277&rft.epage=277&rft.pages=277-277&rft.artnum=277&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-018-2291-2&rft_dat=%3Cgale_doaj_%3EA556986424%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-8164327402e06873b4eb0444decd203f26e550325d92aa4a0fdafaae2e0648c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090428720&rft_id=info:pmid/30064383&rft_galeid=A556986424&rfr_iscdi=true |