Loading…
Ocean warming drives rapid dynamic activation of marine-terminating glacier on the west Antarctic Peninsula
Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse o...
Saved in:
Published in: | Nature communications 2023-11, Vol.14 (1), p.7535-7535, Article 7535 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4334-7dfd2fffb887853eb773779ca440d99cbf94b1ce6b1574a224b7f37206b506773 |
---|---|
cites | cdi_FETCH-LOGICAL-c4334-7dfd2fffb887853eb773779ca440d99cbf94b1ce6b1574a224b7f37206b506773 |
container_end_page | 7535 |
container_issue | 1 |
container_start_page | 7535 |
container_title | Nature communications |
container_volume | 14 |
creator | Wallis, Benjamin J. Hogg, Anna E. Meredith, Michael P. Close, Romilly Hardy, Dominic McMillan, Malcolm Wuite, Jan Nagler, Thomas Moffat, Carlos |
description | Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability.
Warm ocean waters and favourable bathymetry caused Cadman Glacier on the Antarctic Peninsula to increase speed by 94% from 2018 to 2019. This led to increased ice discharge, glacier retreat of 8 kilometres, and glacier thinning by 20 meters per year. |
doi_str_mv | 10.1038/s41467-023-42970-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f593329b706f40f1be5befacc59815ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f593329b706f40f1be5befacc59815ef</doaj_id><sourcerecordid>2894585929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4334-7dfd2fffb887853eb773779ca440d99cbf94b1ce6b1574a224b7f37206b506773</originalsourceid><addsrcrecordid>eNp9kktv1TAUhCMEolXpH2BliQ2bgJ-xvUJVxaNSpbKAtWU7x6kviXOxk1v13-PbVEBZ4I2t45lPo6NpmtcEvyOYqfeFE97JFlPWcqolbvmz5pRiTloiKXv-1_ukOS9lh-thmijOXzYnTGHSaaZOmx83HmxCdzZPMQ2oz_EABWW7jz3q75OdokfWL_FglzgnNAc02RwTtAscHXVaXcNofYSMqmC5BXQHZUEXabG5Gj36Cimmso72VfMi2LHA-eN91nz_9PHb5Zf2-ubz1eXFdes5Y7yVfehpCMEpJZVg4KRkUmpvOce91t4FzR3x0DkiJLeUcicDkxR3TuCuis-aq43bz3Zn9jnWyPdmttE8DOY8GJtrshFMEJoxqp3EXeA4EAfCQbDeC62IgFBZHzbWfnUT9B7Sku34BPr0J8VbM8wHQ3CnuJC6Et4-EvL8c62rMVMsHsbRJpjXYqjSggrddaJK3_wj3c1rTnVXRxUXSmh6BNJN5fNcSobwOw3B5tgNs3XD1G6Yh24YXk1sM5UqTgPkP-j_uH4Bx5y79Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894585929</pqid></control><display><type>article</type><title>Ocean warming drives rapid dynamic activation of marine-terminating glacier on the west Antarctic Peninsula</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wallis, Benjamin J. ; Hogg, Anna E. ; Meredith, Michael P. ; Close, Romilly ; Hardy, Dominic ; McMillan, Malcolm ; Wuite, Jan ; Nagler, Thomas ; Moffat, Carlos</creator><creatorcontrib>Wallis, Benjamin J. ; Hogg, Anna E. ; Meredith, Michael P. ; Close, Romilly ; Hardy, Dominic ; McMillan, Malcolm ; Wuite, Jan ; Nagler, Thomas ; Moffat, Carlos</creatorcontrib><description>Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability.
Warm ocean waters and favourable bathymetry caused Cadman Glacier on the Antarctic Peninsula to increase speed by 94% from 2018 to 2019. This led to increased ice discharge, glacier retreat of 8 kilometres, and glacier thinning by 20 meters per year.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-42970-4</identifier><identifier>PMID: 38016938</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/125 ; 704/106/829/2737 ; 704/829/2737 ; Bathymetry ; Climate variability ; Discharge ; Glaciers ; Humanities and Social Sciences ; Ice ; Ice sheets ; Ice shelves ; Land ice ; Measuring instruments ; Meltwater ; multidisciplinary ; Ocean temperature ; Ocean warming ; Ponding ; Satellite observation ; Science ; Science (multidisciplinary) ; Seawater ; Thinning ; Upper ocean ; Warm water</subject><ispartof>Nature communications, 2023-11, Vol.14 (1), p.7535-7535, Article 7535</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4334-7dfd2fffb887853eb773779ca440d99cbf94b1ce6b1574a224b7f37206b506773</citedby><cites>FETCH-LOGICAL-c4334-7dfd2fffb887853eb773779ca440d99cbf94b1ce6b1574a224b7f37206b506773</cites><orcidid>0000-0002-6441-4937 ; 0000-0002-7342-7756 ; 0000-0002-5113-0177 ; 0000-0001-9333-1586 ; 0000-0003-1298-8469 ; 0000-0003-3671-2862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2894585929/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2894585929?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Wallis, Benjamin J.</creatorcontrib><creatorcontrib>Hogg, Anna E.</creatorcontrib><creatorcontrib>Meredith, Michael P.</creatorcontrib><creatorcontrib>Close, Romilly</creatorcontrib><creatorcontrib>Hardy, Dominic</creatorcontrib><creatorcontrib>McMillan, Malcolm</creatorcontrib><creatorcontrib>Wuite, Jan</creatorcontrib><creatorcontrib>Nagler, Thomas</creatorcontrib><creatorcontrib>Moffat, Carlos</creatorcontrib><title>Ocean warming drives rapid dynamic activation of marine-terminating glacier on the west Antarctic Peninsula</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability.
Warm ocean waters and favourable bathymetry caused Cadman Glacier on the Antarctic Peninsula to increase speed by 94% from 2018 to 2019. This led to increased ice discharge, glacier retreat of 8 kilometres, and glacier thinning by 20 meters per year.</description><subject>704/106/125</subject><subject>704/106/829/2737</subject><subject>704/829/2737</subject><subject>Bathymetry</subject><subject>Climate variability</subject><subject>Discharge</subject><subject>Glaciers</subject><subject>Humanities and Social Sciences</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Ice shelves</subject><subject>Land ice</subject><subject>Measuring instruments</subject><subject>Meltwater</subject><subject>multidisciplinary</subject><subject>Ocean temperature</subject><subject>Ocean warming</subject><subject>Ponding</subject><subject>Satellite observation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seawater</subject><subject>Thinning</subject><subject>Upper ocean</subject><subject>Warm water</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1TAUhCMEolXpH2BliQ2bgJ-xvUJVxaNSpbKAtWU7x6kviXOxk1v13-PbVEBZ4I2t45lPo6NpmtcEvyOYqfeFE97JFlPWcqolbvmz5pRiTloiKXv-1_ukOS9lh-thmijOXzYnTGHSaaZOmx83HmxCdzZPMQ2oz_EABWW7jz3q75OdokfWL_FglzgnNAc02RwTtAscHXVaXcNofYSMqmC5BXQHZUEXabG5Gj36Cimmso72VfMi2LHA-eN91nz_9PHb5Zf2-ubz1eXFdes5Y7yVfehpCMEpJZVg4KRkUmpvOce91t4FzR3x0DkiJLeUcicDkxR3TuCuis-aq43bz3Zn9jnWyPdmttE8DOY8GJtrshFMEJoxqp3EXeA4EAfCQbDeC62IgFBZHzbWfnUT9B7Sku34BPr0J8VbM8wHQ3CnuJC6Et4-EvL8c62rMVMsHsbRJpjXYqjSggrddaJK3_wj3c1rTnVXRxUXSmh6BNJN5fNcSobwOw3B5tgNs3XD1G6Yh24YXk1sM5UqTgPkP-j_uH4Bx5y79Q</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Wallis, Benjamin J.</creator><creator>Hogg, Anna E.</creator><creator>Meredith, Michael P.</creator><creator>Close, Romilly</creator><creator>Hardy, Dominic</creator><creator>McMillan, Malcolm</creator><creator>Wuite, Jan</creator><creator>Nagler, Thomas</creator><creator>Moffat, Carlos</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6441-4937</orcidid><orcidid>https://orcid.org/0000-0002-7342-7756</orcidid><orcidid>https://orcid.org/0000-0002-5113-0177</orcidid><orcidid>https://orcid.org/0000-0001-9333-1586</orcidid><orcidid>https://orcid.org/0000-0003-1298-8469</orcidid><orcidid>https://orcid.org/0000-0003-3671-2862</orcidid></search><sort><creationdate>20231128</creationdate><title>Ocean warming drives rapid dynamic activation of marine-terminating glacier on the west Antarctic Peninsula</title><author>Wallis, Benjamin J. ; Hogg, Anna E. ; Meredith, Michael P. ; Close, Romilly ; Hardy, Dominic ; McMillan, Malcolm ; Wuite, Jan ; Nagler, Thomas ; Moffat, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4334-7dfd2fffb887853eb773779ca440d99cbf94b1ce6b1574a224b7f37206b506773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>704/106/125</topic><topic>704/106/829/2737</topic><topic>704/829/2737</topic><topic>Bathymetry</topic><topic>Climate variability</topic><topic>Discharge</topic><topic>Glaciers</topic><topic>Humanities and Social Sciences</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Ice shelves</topic><topic>Land ice</topic><topic>Measuring instruments</topic><topic>Meltwater</topic><topic>multidisciplinary</topic><topic>Ocean temperature</topic><topic>Ocean warming</topic><topic>Ponding</topic><topic>Satellite observation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seawater</topic><topic>Thinning</topic><topic>Upper ocean</topic><topic>Warm water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallis, Benjamin J.</creatorcontrib><creatorcontrib>Hogg, Anna E.</creatorcontrib><creatorcontrib>Meredith, Michael P.</creatorcontrib><creatorcontrib>Close, Romilly</creatorcontrib><creatorcontrib>Hardy, Dominic</creatorcontrib><creatorcontrib>McMillan, Malcolm</creatorcontrib><creatorcontrib>Wuite, Jan</creatorcontrib><creatorcontrib>Nagler, Thomas</creatorcontrib><creatorcontrib>Moffat, Carlos</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallis, Benjamin J.</au><au>Hogg, Anna E.</au><au>Meredith, Michael P.</au><au>Close, Romilly</au><au>Hardy, Dominic</au><au>McMillan, Malcolm</au><au>Wuite, Jan</au><au>Nagler, Thomas</au><au>Moffat, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean warming drives rapid dynamic activation of marine-terminating glacier on the west Antarctic Peninsula</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-11-28</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>7535</spage><epage>7535</epage><pages>7535-7535</pages><artnum>7535</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability.
Warm ocean waters and favourable bathymetry caused Cadman Glacier on the Antarctic Peninsula to increase speed by 94% from 2018 to 2019. This led to increased ice discharge, glacier retreat of 8 kilometres, and glacier thinning by 20 meters per year.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38016938</pmid><doi>10.1038/s41467-023-42970-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6441-4937</orcidid><orcidid>https://orcid.org/0000-0002-7342-7756</orcidid><orcidid>https://orcid.org/0000-0002-5113-0177</orcidid><orcidid>https://orcid.org/0000-0001-9333-1586</orcidid><orcidid>https://orcid.org/0000-0003-1298-8469</orcidid><orcidid>https://orcid.org/0000-0003-3671-2862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-11, Vol.14 (1), p.7535-7535, Article 7535 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f593329b706f40f1be5befacc59815ef |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 704/106/125 704/106/829/2737 704/829/2737 Bathymetry Climate variability Discharge Glaciers Humanities and Social Sciences Ice Ice sheets Ice shelves Land ice Measuring instruments Meltwater multidisciplinary Ocean temperature Ocean warming Ponding Satellite observation Science Science (multidisciplinary) Seawater Thinning Upper ocean Warm water |
title | Ocean warming drives rapid dynamic activation of marine-terminating glacier on the west Antarctic Peninsula |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20warming%20drives%20rapid%20dynamic%20activation%20of%20marine-terminating%20glacier%20on%20the%20west%20Antarctic%20Peninsula&rft.jtitle=Nature%20communications&rft.au=Wallis,%20Benjamin%20J.&rft.date=2023-11-28&rft.volume=14&rft.issue=1&rft.spage=7535&rft.epage=7535&rft.pages=7535-7535&rft.artnum=7535&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-42970-4&rft_dat=%3Cproquest_doaj_%3E2894585929%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4334-7dfd2fffb887853eb773779ca440d99cbf94b1ce6b1574a224b7f37206b506773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894585929&rft_id=info:pmid/38016938&rfr_iscdi=true |