Loading…

Multisensor Fused Fault Diagnosis for Rotation Machinery Based on Supervised Second-Order Tensor Locality Preserving Projection and Weighted k-Nearest Neighbor Classifier under Assembled Matrix Distance Metric

In order to sufficiently capture the useful fault-related information available in the multiple vibration sensors used in rotation machinery, while concurrently avoiding the introduction of the limitation of dimensionality, a new fault diagnosis method for rotation machinery based on supervised seco...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2016-01, Vol.2016 (2016), p.1-14
Main Authors: Ge, Jianghua, Ren, Bingyin, Wang, Gang, Wei, Fen, Wang, Yaping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c546t-7e3d7d1991e3c9c60f7045c54d6a09e3ff6e15b0a2e7c7a097d93a0e904245023
cites cdi_FETCH-LOGICAL-c546t-7e3d7d1991e3c9c60f7045c54d6a09e3ff6e15b0a2e7c7a097d93a0e904245023
container_end_page 14
container_issue 2016
container_start_page 1
container_title Shock and vibration
container_volume 2016
creator Ge, Jianghua
Ren, Bingyin
Wang, Gang
Wei, Fen
Wang, Yaping
description In order to sufficiently capture the useful fault-related information available in the multiple vibration sensors used in rotation machinery, while concurrently avoiding the introduction of the limitation of dimensionality, a new fault diagnosis method for rotation machinery based on supervised second-order tensor locality preserving projection (SSTLPP) and weighted k-nearest neighbor classifier (WKNNC) with an assembled matrix distance metric (AMDM) is presented. Second-order tensor representation of multisensor fused conditional features is employed to replace the prevailing vector description of features from a single sensor. Then, an SSTLPP algorithm under AMDM (SSTLPP-AMDM) is presented to realize dimensional reduction of original high-dimensional feature tensor. Compared with classical second-order tensor locality preserving projection (STLPP), the SSTLPP-AMDM algorithm not only considers both local neighbor information and class label information but also replaces the existing Frobenius distance measure with AMDM for construction of the similarity weighting matrix. Finally, the obtained low-dimensional feature tensor is input into WKNNC with AMDM to implement the fault diagnosis of the rotation machinery. A fault diagnosis experiment is performed for a gearbox which demonstrates that the second-order tensor formed multisensor fused fault data has good results for multisensor fusion fault diagnosis and the formulated fault diagnosis method can effectively improve diagnostic accuracy.
doi_str_mv 10.1155/2016/1212457
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f59bc6eb0ee64325aa9b289f9cd449b9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513641688</galeid><doaj_id>oai_doaj_org_article_f59bc6eb0ee64325aa9b289f9cd449b9</doaj_id><sourcerecordid>A513641688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-7e3d7d1991e3c9c60f7045c54d6a09e3ff6e15b0a2e7c7a097d93a0e904245023</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEEqVw44wicUGCtHYSJ_GxXViotNsiWsQxmtjjrZesvdgJsD-Tf8SkqUDignyI5_mbl0z8kuQ5ZyecC3GaM16d8pznpagfJEe8qUUmc1Y8pD2rWSarPH-cPIlxyxgTRVUeJb_WYz_YiC76kC7HiDpdAknpWwsb56ONqaGTT36AwXqXrkHdWofhkJ7DBJN0Pe4xfLdTdY3KO51dBY0hvZlNV15Bb4dD-jFgnEC3oa3forozBKfTL2g3twP1f80uEQgb0stJ6qh90UOM1lgyHN1kexYj7rqe6DUMwf6kL40DOIXpGqlWT5NHBvqIz-6fx8nn5bubxYdsdfX-YnG2ypQoqyGrsdC15lJyLJRUFTM1KwWd6QqYxMKYCrnoGORYq5qkWssCGEpW0u9leXGcXMy-2sO23Qe7g3BoPdj2TvBh00IYrOqxNUJ2qsKOIVZlkQsA2eWNNFLpspSdJK9Xs9c--G8jzd_ubFTY9-DQj7HlTcMYLxpZEfryH3Trx-BoUqLKijVNmU_UyUxtgN5vnfFDAEVL487SHaGxpJ8JTiHgVdNQw5u5QQUfY0DzZyLO2ilc7RSu9j5chL-ecQqDhh_2f_SLmUZi0MBfmlNGa1H8BudT21w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846088426</pqid></control><display><type>article</type><title>Multisensor Fused Fault Diagnosis for Rotation Machinery Based on Supervised Second-Order Tensor Locality Preserving Projection and Weighted k-Nearest Neighbor Classifier under Assembled Matrix Distance Metric</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Ge, Jianghua ; Ren, Bingyin ; Wang, Gang ; Wei, Fen ; Wang, Yaping</creator><contributor>Fazzolari, Fiorenzo A.</contributor><creatorcontrib>Ge, Jianghua ; Ren, Bingyin ; Wang, Gang ; Wei, Fen ; Wang, Yaping ; Fazzolari, Fiorenzo A.</creatorcontrib><description>In order to sufficiently capture the useful fault-related information available in the multiple vibration sensors used in rotation machinery, while concurrently avoiding the introduction of the limitation of dimensionality, a new fault diagnosis method for rotation machinery based on supervised second-order tensor locality preserving projection (SSTLPP) and weighted k-nearest neighbor classifier (WKNNC) with an assembled matrix distance metric (AMDM) is presented. Second-order tensor representation of multisensor fused conditional features is employed to replace the prevailing vector description of features from a single sensor. Then, an SSTLPP algorithm under AMDM (SSTLPP-AMDM) is presented to realize dimensional reduction of original high-dimensional feature tensor. Compared with classical second-order tensor locality preserving projection (STLPP), the SSTLPP-AMDM algorithm not only considers both local neighbor information and class label information but also replaces the existing Frobenius distance measure with AMDM for construction of the similarity weighting matrix. Finally, the obtained low-dimensional feature tensor is input into WKNNC with AMDM to implement the fault diagnosis of the rotation machinery. A fault diagnosis experiment is performed for a gearbox which demonstrates that the second-order tensor formed multisensor fused fault data has good results for multisensor fusion fault diagnosis and the formulated fault diagnosis method can effectively improve diagnostic accuracy.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2016/1212457</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Classification ; Fault diagnosis ; Machinery ; Mathematical analysis ; Pattern recognition ; Projection ; Rotating machinery ; Sensors ; Studies ; Teaching methods ; Tensors ; Vibration</subject><ispartof>Shock and vibration, 2016-01, Vol.2016 (2016), p.1-14</ispartof><rights>Copyright © 2016 Fen Wei et al.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 Fen Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-7e3d7d1991e3c9c60f7045c54d6a09e3ff6e15b0a2e7c7a097d93a0e904245023</citedby><cites>FETCH-LOGICAL-c546t-7e3d7d1991e3c9c60f7045c54d6a09e3ff6e15b0a2e7c7a097d93a0e904245023</cites><orcidid>0000-0003-4048-3644 ; 0000-0003-3629-1551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1846088426/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1846088426?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><contributor>Fazzolari, Fiorenzo A.</contributor><creatorcontrib>Ge, Jianghua</creatorcontrib><creatorcontrib>Ren, Bingyin</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wei, Fen</creatorcontrib><creatorcontrib>Wang, Yaping</creatorcontrib><title>Multisensor Fused Fault Diagnosis for Rotation Machinery Based on Supervised Second-Order Tensor Locality Preserving Projection and Weighted k-Nearest Neighbor Classifier under Assembled Matrix Distance Metric</title><title>Shock and vibration</title><description>In order to sufficiently capture the useful fault-related information available in the multiple vibration sensors used in rotation machinery, while concurrently avoiding the introduction of the limitation of dimensionality, a new fault diagnosis method for rotation machinery based on supervised second-order tensor locality preserving projection (SSTLPP) and weighted k-nearest neighbor classifier (WKNNC) with an assembled matrix distance metric (AMDM) is presented. Second-order tensor representation of multisensor fused conditional features is employed to replace the prevailing vector description of features from a single sensor. Then, an SSTLPP algorithm under AMDM (SSTLPP-AMDM) is presented to realize dimensional reduction of original high-dimensional feature tensor. Compared with classical second-order tensor locality preserving projection (STLPP), the SSTLPP-AMDM algorithm not only considers both local neighbor information and class label information but also replaces the existing Frobenius distance measure with AMDM for construction of the similarity weighting matrix. Finally, the obtained low-dimensional feature tensor is input into WKNNC with AMDM to implement the fault diagnosis of the rotation machinery. A fault diagnosis experiment is performed for a gearbox which demonstrates that the second-order tensor formed multisensor fused fault data has good results for multisensor fusion fault diagnosis and the formulated fault diagnosis method can effectively improve diagnostic accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Fault diagnosis</subject><subject>Machinery</subject><subject>Mathematical analysis</subject><subject>Pattern recognition</subject><subject>Projection</subject><subject>Rotating machinery</subject><subject>Sensors</subject><subject>Studies</subject><subject>Teaching methods</subject><subject>Tensors</subject><subject>Vibration</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkkFv1DAQhSMEEqVw44wicUGCtHYSJ_GxXViotNsiWsQxmtjjrZesvdgJsD-Tf8SkqUDignyI5_mbl0z8kuQ5ZyecC3GaM16d8pznpagfJEe8qUUmc1Y8pD2rWSarPH-cPIlxyxgTRVUeJb_WYz_YiC76kC7HiDpdAknpWwsb56ONqaGTT36AwXqXrkHdWofhkJ7DBJN0Pe4xfLdTdY3KO51dBY0hvZlNV15Bb4dD-jFgnEC3oa3forozBKfTL2g3twP1f80uEQgb0stJ6qh90UOM1lgyHN1kexYj7rqe6DUMwf6kL40DOIXpGqlWT5NHBvqIz-6fx8nn5bubxYdsdfX-YnG2ypQoqyGrsdC15lJyLJRUFTM1KwWd6QqYxMKYCrnoGORYq5qkWssCGEpW0u9leXGcXMy-2sO23Qe7g3BoPdj2TvBh00IYrOqxNUJ2qsKOIVZlkQsA2eWNNFLpspSdJK9Xs9c--G8jzd_ubFTY9-DQj7HlTcMYLxpZEfryH3Trx-BoUqLKijVNmU_UyUxtgN5vnfFDAEVL487SHaGxpJ8JTiHgVdNQw5u5QQUfY0DzZyLO2ilc7RSu9j5chL-ecQqDhh_2f_SLmUZi0MBfmlNGa1H8BudT21w</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ge, Jianghua</creator><creator>Ren, Bingyin</creator><creator>Wang, Gang</creator><creator>Wei, Fen</creator><creator>Wang, Yaping</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4048-3644</orcidid><orcidid>https://orcid.org/0000-0003-3629-1551</orcidid></search><sort><creationdate>20160101</creationdate><title>Multisensor Fused Fault Diagnosis for Rotation Machinery Based on Supervised Second-Order Tensor Locality Preserving Projection and Weighted k-Nearest Neighbor Classifier under Assembled Matrix Distance Metric</title><author>Ge, Jianghua ; Ren, Bingyin ; Wang, Gang ; Wei, Fen ; Wang, Yaping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-7e3d7d1991e3c9c60f7045c54d6a09e3ff6e15b0a2e7c7a097d93a0e904245023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Fault diagnosis</topic><topic>Machinery</topic><topic>Mathematical analysis</topic><topic>Pattern recognition</topic><topic>Projection</topic><topic>Rotating machinery</topic><topic>Sensors</topic><topic>Studies</topic><topic>Teaching methods</topic><topic>Tensors</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jianghua</creatorcontrib><creatorcontrib>Ren, Bingyin</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wei, Fen</creatorcontrib><creatorcontrib>Wang, Yaping</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jianghua</au><au>Ren, Bingyin</au><au>Wang, Gang</au><au>Wei, Fen</au><au>Wang, Yaping</au><au>Fazzolari, Fiorenzo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisensor Fused Fault Diagnosis for Rotation Machinery Based on Supervised Second-Order Tensor Locality Preserving Projection and Weighted k-Nearest Neighbor Classifier under Assembled Matrix Distance Metric</atitle><jtitle>Shock and vibration</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>In order to sufficiently capture the useful fault-related information available in the multiple vibration sensors used in rotation machinery, while concurrently avoiding the introduction of the limitation of dimensionality, a new fault diagnosis method for rotation machinery based on supervised second-order tensor locality preserving projection (SSTLPP) and weighted k-nearest neighbor classifier (WKNNC) with an assembled matrix distance metric (AMDM) is presented. Second-order tensor representation of multisensor fused conditional features is employed to replace the prevailing vector description of features from a single sensor. Then, an SSTLPP algorithm under AMDM (SSTLPP-AMDM) is presented to realize dimensional reduction of original high-dimensional feature tensor. Compared with classical second-order tensor locality preserving projection (STLPP), the SSTLPP-AMDM algorithm not only considers both local neighbor information and class label information but also replaces the existing Frobenius distance measure with AMDM for construction of the similarity weighting matrix. Finally, the obtained low-dimensional feature tensor is input into WKNNC with AMDM to implement the fault diagnosis of the rotation machinery. A fault diagnosis experiment is performed for a gearbox which demonstrates that the second-order tensor formed multisensor fused fault data has good results for multisensor fusion fault diagnosis and the formulated fault diagnosis method can effectively improve diagnostic accuracy.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/1212457</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4048-3644</orcidid><orcidid>https://orcid.org/0000-0003-3629-1551</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2016-01, Vol.2016 (2016), p.1-14
issn 1070-9622
1875-9203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f59bc6eb0ee64325aa9b289f9cd449b9
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Accuracy
Algorithms
Classification
Fault diagnosis
Machinery
Mathematical analysis
Pattern recognition
Projection
Rotating machinery
Sensors
Studies
Teaching methods
Tensors
Vibration
title Multisensor Fused Fault Diagnosis for Rotation Machinery Based on Supervised Second-Order Tensor Locality Preserving Projection and Weighted k-Nearest Neighbor Classifier under Assembled Matrix Distance Metric
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisensor%20Fused%20Fault%20Diagnosis%20for%20Rotation%20Machinery%20Based%20on%20Supervised%20Second-Order%20Tensor%20Locality%20Preserving%20Projection%20and%20Weighted%20k-Nearest%20Neighbor%20Classifier%20under%20Assembled%20Matrix%20Distance%20Metric&rft.jtitle=Shock%20and%20vibration&rft.au=Ge,%20Jianghua&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2016/1212457&rft_dat=%3Cgale_doaj_%3EA513641688%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-7e3d7d1991e3c9c60f7045c54d6a09e3ff6e15b0a2e7c7a097d93a0e904245023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1846088426&rft_id=info:pmid/&rft_galeid=A513641688&rfr_iscdi=true