Loading…

Flexible method for accurate calibration of large-scale vision metrology system based on virtual 3-D targets and laser tracker

For the purpose of obtaining high-precision in stereo vision calibration, a large-size precise calibration target, which can cover more than half of the field of view is vital. However, large-scale calibration targets are very difficult to fabricate. Based on the idea of error tracing, a high-precis...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced robotic systems 2019-11, Vol.16 (6)
Main Authors: Zhang, Xi, Xu, Yuanzhi, Li, Haichao, Zhu, Lijing, Wang, Xin, Li, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the purpose of obtaining high-precision in stereo vision calibration, a large-size precise calibration target, which can cover more than half of the field of view is vital. However, large-scale calibration targets are very difficult to fabricate. Based on the idea of error tracing, a high-precision calibration method for vision system with large field of view by constructing a virtual 3-D calibration target with a laser tracker was proposed in this article. A virtual 3-D calibration target that covers the whole measurement space can be established flexibly and the measurement precision of the vision system can be traceable to the laser tracker. First, virtual 3-D targets by calculating rigid body transformation with unit quaternion method were constructed. Then, the high-order distortion camera model was taken into consideration. Besides, the calibration parameters were solved with Levenberg–Marquardt optimization algorithm. In the experiment, a binocular stereo vision system with the field of view of 4 × 3 × 2 m3 was built for verifying the validity and precision of the proposed calibration method. It is measured that the accuracy with the proposed method can be greatly improved comparing with traditional plane calibration method. The method can be widely used in industrial applications, such as in the field of calibrating large-scale vision-based coordinate metrology, and six-degrees of freedom pose tracking system for dimensional measurement of workpiece, as well as robotics geometrical accuracy detection and compensation.
ISSN:1729-8806
1729-8814
DOI:10.1177/1729881419893516