Loading…
Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses
The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropol...
Saved in:
Published in: | Journal of mathematics (Hidawi) 2022, Vol.2022 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of mathematics (Hidawi) |
container_volume | 2022 |
creator | Zhao, Yuanying Duan, Xingde |
description | The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropolis-Hastings algorithm is employed to obtain the Bayesian estimates of the regression coefficients, shrinkage coefficients, missingness mechanism models parameters, and their standard errors. We extend the partial posterior predictive p value for goodness-of-fit statistic to investigate the plausibility of the posited model. Finally, several simulation studies and the air pollution data example are undertaken to demonstrate the newly developed methodologies. |
doi_str_mv | 10.1155/2022/3168735 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5a0f1a1f5f8440e8e3f6e7ac194d58c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5a0f1a1f5f8440e8e3f6e7ac194d58c</doaj_id><sourcerecordid>2630682500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsGh3_oABl1qbdzLLWnwUWkXRdUgnyTRlnIzJ1NJ_b-pUl67u5fJxzj2cLLuA4AZCSscIIDTGkAmO6VE2QBiSEeGCHv_uDBWn2TDGNQAAIoFFAQbZy63amehUk0-0ajv3ZfK5itHn1of81VTBxOh8ky-8NnXMt65b5U--cVXjg1rWJl-4BDRVYmPrm2jieXZiVR3N8DDPsvf7u7fp42j-_DCbTuajEjPQjTjTVmm1XGItBGclLq3hClFQYsKJxrZIUbQRBheaE8SxYRAWKQhHSFjK8Fk263W1V2vZBvehwk565eTPwYdKqtC5sjbSUgUsVNBSKwgBe1HLklsJC6KpKJPWZa_VBv-5MbGTa78JTXpfIoYBE-kvkKjrniqDjzEY--cKgdx3IPcdyEMHCb_q8ZVrtNq6_-lvrBSE_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630682500</pqid></control><display><type>article</type><title>Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses</title><source>Wiley Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Zhao, Yuanying ; Duan, Xingde</creator><contributor>Tang, Niansheng ; Niansheng Tang</contributor><creatorcontrib>Zhao, Yuanying ; Duan, Xingde ; Tang, Niansheng ; Niansheng Tang</creatorcontrib><description>The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropolis-Hastings algorithm is employed to obtain the Bayesian estimates of the regression coefficients, shrinkage coefficients, missingness mechanism models parameters, and their standard errors. We extend the partial posterior predictive p value for goodness-of-fit statistic to investigate the plausibility of the posited model. Finally, several simulation studies and the air pollution data example are undertaken to demonstrate the newly developed methodologies.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2022/3168735</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algorithms ; Bayesian analysis ; Feature selection ; Goodness of fit ; Mathematics ; Parameter estimation ; Regression analysis ; Regression coefficients ; Regression models ; Statistical analysis ; Variables</subject><ispartof>Journal of mathematics (Hidawi), 2022, Vol.2022 (1)</ispartof><rights>Copyright © 2022 Yuanying Zhao and Xingde Duan.</rights><rights>Copyright © 2022 Yuanying Zhao and Xingde Duan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563</cites><orcidid>0000-0003-1902-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2630682500/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2630682500?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Tang, Niansheng</contributor><contributor>Niansheng Tang</contributor><creatorcontrib>Zhao, Yuanying</creatorcontrib><creatorcontrib>Duan, Xingde</creatorcontrib><title>Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses</title><title>Journal of mathematics (Hidawi)</title><description>The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropolis-Hastings algorithm is employed to obtain the Bayesian estimates of the regression coefficients, shrinkage coefficients, missingness mechanism models parameters, and their standard errors. We extend the partial posterior predictive p value for goodness-of-fit statistic to investigate the plausibility of the posited model. Finally, several simulation studies and the air pollution data example are undertaken to demonstrate the newly developed methodologies.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Feature selection</subject><subject>Goodness of fit</subject><subject>Mathematics</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Variables</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEUhQdRsGh3_oABl1qbdzLLWnwUWkXRdUgnyTRlnIzJ1NJ_b-pUl67u5fJxzj2cLLuA4AZCSscIIDTGkAmO6VE2QBiSEeGCHv_uDBWn2TDGNQAAIoFFAQbZy63amehUk0-0ajv3ZfK5itHn1of81VTBxOh8ky-8NnXMt65b5U--cVXjg1rWJl-4BDRVYmPrm2jieXZiVR3N8DDPsvf7u7fp42j-_DCbTuajEjPQjTjTVmm1XGItBGclLq3hClFQYsKJxrZIUbQRBheaE8SxYRAWKQhHSFjK8Fk263W1V2vZBvehwk565eTPwYdKqtC5sjbSUgUsVNBSKwgBe1HLklsJC6KpKJPWZa_VBv-5MbGTa78JTXpfIoYBE-kvkKjrniqDjzEY--cKgdx3IPcdyEMHCb_q8ZVrtNq6_-lvrBSE_A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhao, Yuanying</creator><creator>Duan, Xingde</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1902-6545</orcidid></search><sort><creationdate>2022</creationdate><title>Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses</title><author>Zhao, Yuanying ; Duan, Xingde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Feature selection</topic><topic>Goodness of fit</topic><topic>Mathematics</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuanying</creatorcontrib><creatorcontrib>Duan, Xingde</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuanying</au><au>Duan, Xingde</au><au>Tang, Niansheng</au><au>Niansheng Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropolis-Hastings algorithm is employed to obtain the Bayesian estimates of the regression coefficients, shrinkage coefficients, missingness mechanism models parameters, and their standard errors. We extend the partial posterior predictive p value for goodness-of-fit statistic to investigate the plausibility of the posited model. Finally, several simulation studies and the air pollution data example are undertaken to demonstrate the newly developed methodologies.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2022/3168735</doi><orcidid>https://orcid.org/0000-0003-1902-6545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-4629 |
ispartof | Journal of mathematics (Hidawi), 2022, Vol.2022 (1) |
issn | 2314-4629 2314-4785 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f5a0f1a1f5f8440e8e3f6e7ac194d58c |
source | Wiley Open Access; ProQuest Publicly Available Content database |
subjects | Algorithms Bayesian analysis Feature selection Goodness of fit Mathematics Parameter estimation Regression analysis Regression coefficients Regression models Statistical analysis Variables |
title | Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Adaptive%20Lasso%20for%20Regression%20Models%20with%20Nonignorable%20Missing%20Responses&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Zhao,%20Yuanying&rft.date=2022&rft.volume=2022&rft.issue=1&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2022/3168735&rft_dat=%3Cproquest_doaj_%3E2630682500%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630682500&rft_id=info:pmid/&rfr_iscdi=true |