Loading…

Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses

The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics (Hidawi) 2022, Vol.2022 (1)
Main Authors: Zhao, Yuanying, Duan, Xingde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematics (Hidawi)
container_volume 2022
creator Zhao, Yuanying
Duan, Xingde
description The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropolis-Hastings algorithm is employed to obtain the Bayesian estimates of the regression coefficients, shrinkage coefficients, missingness mechanism models parameters, and their standard errors. We extend the partial posterior predictive p value for goodness-of-fit statistic to investigate the plausibility of the posited model. Finally, several simulation studies and the air pollution data example are undertaken to demonstrate the newly developed methodologies.
doi_str_mv 10.1155/2022/3168735
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5a0f1a1f5f8440e8e3f6e7ac194d58c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5a0f1a1f5f8440e8e3f6e7ac194d58c</doaj_id><sourcerecordid>2630682500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsGh3_oABl1qbdzLLWnwUWkXRdUgnyTRlnIzJ1NJ_b-pUl67u5fJxzj2cLLuA4AZCSscIIDTGkAmO6VE2QBiSEeGCHv_uDBWn2TDGNQAAIoFFAQbZy63amehUk0-0ajv3ZfK5itHn1of81VTBxOh8ky-8NnXMt65b5U--cVXjg1rWJl-4BDRVYmPrm2jieXZiVR3N8DDPsvf7u7fp42j-_DCbTuajEjPQjTjTVmm1XGItBGclLq3hClFQYsKJxrZIUbQRBheaE8SxYRAWKQhHSFjK8Fk263W1V2vZBvehwk565eTPwYdKqtC5sjbSUgUsVNBSKwgBe1HLklsJC6KpKJPWZa_VBv-5MbGTa78JTXpfIoYBE-kvkKjrniqDjzEY--cKgdx3IPcdyEMHCb_q8ZVrtNq6_-lvrBSE_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630682500</pqid></control><display><type>article</type><title>Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses</title><source>Wiley Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Zhao, Yuanying ; Duan, Xingde</creator><contributor>Tang, Niansheng ; Niansheng Tang</contributor><creatorcontrib>Zhao, Yuanying ; Duan, Xingde ; Tang, Niansheng ; Niansheng Tang</creatorcontrib><description>The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropolis-Hastings algorithm is employed to obtain the Bayesian estimates of the regression coefficients, shrinkage coefficients, missingness mechanism models parameters, and their standard errors. We extend the partial posterior predictive p value for goodness-of-fit statistic to investigate the plausibility of the posited model. Finally, several simulation studies and the air pollution data example are undertaken to demonstrate the newly developed methodologies.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2022/3168735</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Algorithms ; Bayesian analysis ; Feature selection ; Goodness of fit ; Mathematics ; Parameter estimation ; Regression analysis ; Regression coefficients ; Regression models ; Statistical analysis ; Variables</subject><ispartof>Journal of mathematics (Hidawi), 2022, Vol.2022 (1)</ispartof><rights>Copyright © 2022 Yuanying Zhao and Xingde Duan.</rights><rights>Copyright © 2022 Yuanying Zhao and Xingde Duan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563</cites><orcidid>0000-0003-1902-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2630682500/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2630682500?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Tang, Niansheng</contributor><contributor>Niansheng Tang</contributor><creatorcontrib>Zhao, Yuanying</creatorcontrib><creatorcontrib>Duan, Xingde</creatorcontrib><title>Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses</title><title>Journal of mathematics (Hidawi)</title><description>The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropolis-Hastings algorithm is employed to obtain the Bayesian estimates of the regression coefficients, shrinkage coefficients, missingness mechanism models parameters, and their standard errors. We extend the partial posterior predictive p value for goodness-of-fit statistic to investigate the plausibility of the posited model. Finally, several simulation studies and the air pollution data example are undertaken to demonstrate the newly developed methodologies.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Feature selection</subject><subject>Goodness of fit</subject><subject>Mathematics</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Variables</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEUhQdRsGh3_oABl1qbdzLLWnwUWkXRdUgnyTRlnIzJ1NJ_b-pUl67u5fJxzj2cLLuA4AZCSscIIDTGkAmO6VE2QBiSEeGCHv_uDBWn2TDGNQAAIoFFAQbZy63amehUk0-0ajv3ZfK5itHn1of81VTBxOh8ky-8NnXMt65b5U--cVXjg1rWJl-4BDRVYmPrm2jieXZiVR3N8DDPsvf7u7fp42j-_DCbTuajEjPQjTjTVmm1XGItBGclLq3hClFQYsKJxrZIUbQRBheaE8SxYRAWKQhHSFjK8Fk263W1V2vZBvehwk565eTPwYdKqtC5sjbSUgUsVNBSKwgBe1HLklsJC6KpKJPWZa_VBv-5MbGTa78JTXpfIoYBE-kvkKjrniqDjzEY--cKgdx3IPcdyEMHCb_q8ZVrtNq6_-lvrBSE_A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhao, Yuanying</creator><creator>Duan, Xingde</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1902-6545</orcidid></search><sort><creationdate>2022</creationdate><title>Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses</title><author>Zhao, Yuanying ; Duan, Xingde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Feature selection</topic><topic>Goodness of fit</topic><topic>Mathematics</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuanying</creatorcontrib><creatorcontrib>Duan, Xingde</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuanying</au><au>Duan, Xingde</au><au>Tang, Niansheng</au><au>Niansheng Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>The main purpose of this article is to develop a Bayesian adaptive lasso procedure for analyzing linear regression models with nonignorable missing responses, in which the missingness mechanism is specified by a logistic regression model. A sampling procedure combining the Gibbs sampler and Metropolis-Hastings algorithm is employed to obtain the Bayesian estimates of the regression coefficients, shrinkage coefficients, missingness mechanism models parameters, and their standard errors. We extend the partial posterior predictive p value for goodness-of-fit statistic to investigate the plausibility of the posited model. Finally, several simulation studies and the air pollution data example are undertaken to demonstrate the newly developed methodologies.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2022/3168735</doi><orcidid>https://orcid.org/0000-0003-1902-6545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-4629
ispartof Journal of mathematics (Hidawi), 2022, Vol.2022 (1)
issn 2314-4629
2314-4785
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f5a0f1a1f5f8440e8e3f6e7ac194d58c
source Wiley Open Access; ProQuest Publicly Available Content database
subjects Algorithms
Bayesian analysis
Feature selection
Goodness of fit
Mathematics
Parameter estimation
Regression analysis
Regression coefficients
Regression models
Statistical analysis
Variables
title Bayesian Adaptive Lasso for Regression Models with Nonignorable Missing Responses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Adaptive%20Lasso%20for%20Regression%20Models%20with%20Nonignorable%20Missing%20Responses&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Zhao,%20Yuanying&rft.date=2022&rft.volume=2022&rft.issue=1&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2022/3168735&rft_dat=%3Cproquest_doaj_%3E2630682500%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-76dfadabb3d8876c3cfe7a250c3474d3f9168de8e39d74273e61193147228f563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630682500&rft_id=info:pmid/&rfr_iscdi=true