Loading…

Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity

TiO2 exists naturally in three crystalline forms: Anatase, rutile, brookite, and TiO2 (B). These polymorphs exhibit different properties and consequently different photocatalytic performances. This paper aims to clarify the differences between titanium dioxide polymorphs, and the differences in homo...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-02, Vol.13 (4), p.704
Main Authors: Eddy, Diana Rakhmawaty, Permana, Muhamad Diki, Sakti, Lintang Kumoro, Sheha, Geometry Amal Nur, Solihudin, Hidayat, Sahrul, Takei, Takahiro, Kumada, Nobuhiro, Rahayu, Iman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TiO2 exists naturally in three crystalline forms: Anatase, rutile, brookite, and TiO2 (B). These polymorphs exhibit different properties and consequently different photocatalytic performances. This paper aims to clarify the differences between titanium dioxide polymorphs, and the differences in homophase, biphase, and triphase properties in various photocatalytic applications. However, homophase TiO2 has various disadvantages such as high recombination rates and low adsorption capacity. Meanwhile, TiO2 heterophase can effectively stimulate electron transfer from one phase to another causing superior photocatalytic performance. Various studies have reported the biphase of polymorph TiO2 such as anatase/rutile, anatase/brookite, rutile/brookite, and anatase/TiO2 (B). In addition, this paper also presents the triphase of the TiO2 polymorph. This review is mainly focused on information regarding the heterophase of the TiO2 polymorph, fabrication of heterophase synthesis, and its application as a photocatalyst.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13040704