Loading…

Simulation of two-phase flow by injecting water and surfactant into porous media containing oil and investigation of trapped oil areas

Nowadays, as the oil reservoirs reaching their half-life, using enhanced oil recovery methods is more necessary and more common. Simulations are the synthetic process of real systems. In this study, simulation of water and surfactant injection into a porous media containing oil (two-phase) was perfo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of petroleum exploration and production technology 2021-03, Vol.11 (3), p.1353-1362
Main Authors: Sajadi, Seyed Mousa, Jamshidi, Saeid, Kamalipoor, Meisam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays, as the oil reservoirs reaching their half-life, using enhanced oil recovery methods is more necessary and more common. Simulations are the synthetic process of real systems. In this study, simulation of water and surfactant injection into a porous media containing oil (two-phase) was performed using the computational fluid dynamics method on the image of a real micro-model. Also, the selected anionic surfactant is sodium dodecyl sulfate, which is more effective in sand reservoirs. The effect of using surfactant depends on its concentration. This dependence on concentration in using injection compounds is referred to as critical micelle concentration (CMC). In this study, an injection concentration (inlet boundary) of 1000 ppm was considered as a concentration less than the CMC point (2365 ppm). This range of surfactant concentrations after 4.5 ms increased the porous media recovery factor by 2.21%. Surfactant injection results showed the wettability alteration and IFT finally increases the recovery factor in comparison with water injection. Also, in wide channels, saturation front, and narrow channels, the concentration front has a great effect on the main flowing.
ISSN:2190-0558
2190-0566
DOI:10.1007/s13202-020-01084-z