Loading…
Sharp bounds for partition dimension of generalized Möbius ladders
The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, ( , ) and networks. In this...
Saved in:
Published in: | Open mathematics (Warsaw, Poland) Poland), 2018-11, Vol.16 (1), p.1283-1290 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3 |
container_end_page | 1290 |
container_issue | 1 |
container_start_page | 1283 |
container_title | Open mathematics (Warsaw, Poland) |
container_volume | 16 |
creator | Hussain, Zafar Khan, Junaid Alam Munir, Mobeen Saleem, Muhammad Shoaib Iqbal, Zaffar |
description | The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, (
,
) and networks. In this article, we give the sharp upper bounds and lower bounds for the partition dimension of generalized Möbius ladders,
, for all
≥3 and
≥2. |
doi_str_mv | 10.1515/math-2018-0109 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5d8acc5c0424603ab0c8adade6142bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5d8acc5c0424603ab0c8adade6142bd</doaj_id><sourcerecordid>2545277529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3</originalsourceid><addsrcrecordid>eNptkL9OwzAQxiMEElXpyhyJOcVnx3E8MKCKP5VADMBsXWynTZXGxU6EyoPxArwYCUHAwHL3yb7vu9Mvik6BzIEDP99iu04ogTwhQORBNKFMQsJTzg__6ONoFsKGENJ7iACYRIvHNfpdXLiuMSEunY936NuqrVwTm2prmzAoV8Yr21iPdfVmTXz_8V5UXYhrNMb6cBIdlVgHO_vu0-j5-uppcZvcPdwsF5d3iU6paBPMhChoKiUzmhuBPKUlZoyYjLOSSykLwIL1hVOE_seiMDkvmDUcQJaGTaPlmGscbtTOV1v0e-WwUl8Pzq_UcLuurSq5yVFrrklK04wwLIjO0aCxGaS0GLLOxqyddy-dDa3auM43_fmK9qSoEJzKfmo-TmnvQvC2_NkKRA3c1cBdDdzVwL03XIyGV6xb641d-W7fi9_0_42QAdCcsU_jC4rx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545277529</pqid></control><display><type>article</type><title>Sharp bounds for partition dimension of generalized Möbius ladders</title><source>Publicly Available Content Database</source><source>De Gruyter Open Access Journals</source><creator>Hussain, Zafar ; Khan, Junaid Alam ; Munir, Mobeen ; Saleem, Muhammad Shoaib ; Iqbal, Zaffar</creator><creatorcontrib>Hussain, Zafar ; Khan, Junaid Alam ; Munir, Mobeen ; Saleem, Muhammad Shoaib ; Iqbal, Zaffar</creatorcontrib><description>The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, (
,
) and networks. In this article, we give the sharp upper bounds and lower bounds for the partition dimension of generalized Möbius ladders,
, for all
≥3 and
≥2.</description><identifier>ISSN: 2391-5455</identifier><identifier>EISSN: 2391-5455</identifier><identifier>DOI: 10.1515/math-2018-0109</identifier><language>eng</language><publisher>Warsaw: De Gruyter</publisher><subject>05C12 ; 05C15 ; 05C78 ; Generalized Möbius Ladder ; Ladders ; Lower bounds ; Metric dimension ; Metric space ; Optimization ; Partition dimension ; Upper bounds</subject><ispartof>Open mathematics (Warsaw, Poland), 2018-11, Vol.16 (1), p.1283-1290</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3</citedby><cites>FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/math-2018-0109/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2545277529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,67158,68942</link.rule.ids></links><search><creatorcontrib>Hussain, Zafar</creatorcontrib><creatorcontrib>Khan, Junaid Alam</creatorcontrib><creatorcontrib>Munir, Mobeen</creatorcontrib><creatorcontrib>Saleem, Muhammad Shoaib</creatorcontrib><creatorcontrib>Iqbal, Zaffar</creatorcontrib><title>Sharp bounds for partition dimension of generalized Möbius ladders</title><title>Open mathematics (Warsaw, Poland)</title><description>The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, (
,
) and networks. In this article, we give the sharp upper bounds and lower bounds for the partition dimension of generalized Möbius ladders,
, for all
≥3 and
≥2.</description><subject>05C12</subject><subject>05C15</subject><subject>05C78</subject><subject>Generalized Möbius Ladder</subject><subject>Ladders</subject><subject>Lower bounds</subject><subject>Metric dimension</subject><subject>Metric space</subject><subject>Optimization</subject><subject>Partition dimension</subject><subject>Upper bounds</subject><issn>2391-5455</issn><issn>2391-5455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkL9OwzAQxiMEElXpyhyJOcVnx3E8MKCKP5VADMBsXWynTZXGxU6EyoPxArwYCUHAwHL3yb7vu9Mvik6BzIEDP99iu04ogTwhQORBNKFMQsJTzg__6ONoFsKGENJ7iACYRIvHNfpdXLiuMSEunY936NuqrVwTm2prmzAoV8Yr21iPdfVmTXz_8V5UXYhrNMb6cBIdlVgHO_vu0-j5-uppcZvcPdwsF5d3iU6paBPMhChoKiUzmhuBPKUlZoyYjLOSSykLwIL1hVOE_seiMDkvmDUcQJaGTaPlmGscbtTOV1v0e-WwUl8Pzq_UcLuurSq5yVFrrklK04wwLIjO0aCxGaS0GLLOxqyddy-dDa3auM43_fmK9qSoEJzKfmo-TmnvQvC2_NkKRA3c1cBdDdzVwL03XIyGV6xb641d-W7fi9_0_42QAdCcsU_jC4rx</recordid><startdate>20181108</startdate><enddate>20181108</enddate><creator>Hussain, Zafar</creator><creator>Khan, Junaid Alam</creator><creator>Munir, Mobeen</creator><creator>Saleem, Muhammad Shoaib</creator><creator>Iqbal, Zaffar</creator><general>De Gruyter</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20181108</creationdate><title>Sharp bounds for partition dimension of generalized Möbius ladders</title><author>Hussain, Zafar ; Khan, Junaid Alam ; Munir, Mobeen ; Saleem, Muhammad Shoaib ; Iqbal, Zaffar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>05C12</topic><topic>05C15</topic><topic>05C78</topic><topic>Generalized Möbius Ladder</topic><topic>Ladders</topic><topic>Lower bounds</topic><topic>Metric dimension</topic><topic>Metric space</topic><topic>Optimization</topic><topic>Partition dimension</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Zafar</creatorcontrib><creatorcontrib>Khan, Junaid Alam</creatorcontrib><creatorcontrib>Munir, Mobeen</creatorcontrib><creatorcontrib>Saleem, Muhammad Shoaib</creatorcontrib><creatorcontrib>Iqbal, Zaffar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Open mathematics (Warsaw, Poland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Zafar</au><au>Khan, Junaid Alam</au><au>Munir, Mobeen</au><au>Saleem, Muhammad Shoaib</au><au>Iqbal, Zaffar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp bounds for partition dimension of generalized Möbius ladders</atitle><jtitle>Open mathematics (Warsaw, Poland)</jtitle><date>2018-11-08</date><risdate>2018</risdate><volume>16</volume><issue>1</issue><spage>1283</spage><epage>1290</epage><pages>1283-1290</pages><issn>2391-5455</issn><eissn>2391-5455</eissn><abstract>The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, (
,
) and networks. In this article, we give the sharp upper bounds and lower bounds for the partition dimension of generalized Möbius ladders,
, for all
≥3 and
≥2.</abstract><cop>Warsaw</cop><pub>De Gruyter</pub><doi>10.1515/math-2018-0109</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2391-5455 |
ispartof | Open mathematics (Warsaw, Poland), 2018-11, Vol.16 (1), p.1283-1290 |
issn | 2391-5455 2391-5455 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f5d8acc5c0424603ab0c8adade6142bd |
source | Publicly Available Content Database; De Gruyter Open Access Journals |
subjects | 05C12 05C15 05C78 Generalized Möbius Ladder Ladders Lower bounds Metric dimension Metric space Optimization Partition dimension Upper bounds |
title | Sharp bounds for partition dimension of generalized Möbius ladders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20bounds%20for%20partition%20dimension%20of%20generalized%20M%C3%B6bius%20ladders&rft.jtitle=Open%20mathematics%20(Warsaw,%20Poland)&rft.au=Hussain,%20Zafar&rft.date=2018-11-08&rft.volume=16&rft.issue=1&rft.spage=1283&rft.epage=1290&rft.pages=1283-1290&rft.issn=2391-5455&rft.eissn=2391-5455&rft_id=info:doi/10.1515/math-2018-0109&rft_dat=%3Cproquest_doaj_%3E2545277529%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545277529&rft_id=info:pmid/&rfr_iscdi=true |