Loading…

Sharp bounds for partition dimension of generalized Möbius ladders

The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, ( , ) and networks. In this...

Full description

Saved in:
Bibliographic Details
Published in:Open mathematics (Warsaw, Poland) Poland), 2018-11, Vol.16 (1), p.1283-1290
Main Authors: Hussain, Zafar, Khan, Junaid Alam, Munir, Mobeen, Saleem, Muhammad Shoaib, Iqbal, Zaffar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3
cites cdi_FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3
container_end_page 1290
container_issue 1
container_start_page 1283
container_title Open mathematics (Warsaw, Poland)
container_volume 16
creator Hussain, Zafar
Khan, Junaid Alam
Munir, Mobeen
Saleem, Muhammad Shoaib
Iqbal, Zaffar
description The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, ( , ) and networks. In this article, we give the sharp upper bounds and lower bounds for the partition dimension of generalized Möbius ladders, , for all ≥3 and ≥2.
doi_str_mv 10.1515/math-2018-0109
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5d8acc5c0424603ab0c8adade6142bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5d8acc5c0424603ab0c8adade6142bd</doaj_id><sourcerecordid>2545277529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3</originalsourceid><addsrcrecordid>eNptkL9OwzAQxiMEElXpyhyJOcVnx3E8MKCKP5VADMBsXWynTZXGxU6EyoPxArwYCUHAwHL3yb7vu9Mvik6BzIEDP99iu04ogTwhQORBNKFMQsJTzg__6ONoFsKGENJ7iACYRIvHNfpdXLiuMSEunY936NuqrVwTm2prmzAoV8Yr21iPdfVmTXz_8V5UXYhrNMb6cBIdlVgHO_vu0-j5-uppcZvcPdwsF5d3iU6paBPMhChoKiUzmhuBPKUlZoyYjLOSSykLwIL1hVOE_seiMDkvmDUcQJaGTaPlmGscbtTOV1v0e-WwUl8Pzq_UcLuurSq5yVFrrklK04wwLIjO0aCxGaS0GLLOxqyddy-dDa3auM43_fmK9qSoEJzKfmo-TmnvQvC2_NkKRA3c1cBdDdzVwL03XIyGV6xb641d-W7fi9_0_42QAdCcsU_jC4rx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545277529</pqid></control><display><type>article</type><title>Sharp bounds for partition dimension of generalized Möbius ladders</title><source>Publicly Available Content Database</source><source>De Gruyter Open Access Journals</source><creator>Hussain, Zafar ; Khan, Junaid Alam ; Munir, Mobeen ; Saleem, Muhammad Shoaib ; Iqbal, Zaffar</creator><creatorcontrib>Hussain, Zafar ; Khan, Junaid Alam ; Munir, Mobeen ; Saleem, Muhammad Shoaib ; Iqbal, Zaffar</creatorcontrib><description>The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, ( , ) and networks. In this article, we give the sharp upper bounds and lower bounds for the partition dimension of generalized Möbius ladders, , for all ≥3 and ≥2.</description><identifier>ISSN: 2391-5455</identifier><identifier>EISSN: 2391-5455</identifier><identifier>DOI: 10.1515/math-2018-0109</identifier><language>eng</language><publisher>Warsaw: De Gruyter</publisher><subject>05C12 ; 05C15 ; 05C78 ; Generalized Möbius Ladder ; Ladders ; Lower bounds ; Metric dimension ; Metric space ; Optimization ; Partition dimension ; Upper bounds</subject><ispartof>Open mathematics (Warsaw, Poland), 2018-11, Vol.16 (1), p.1283-1290</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3</citedby><cites>FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/math-2018-0109/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2545277529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,67158,68942</link.rule.ids></links><search><creatorcontrib>Hussain, Zafar</creatorcontrib><creatorcontrib>Khan, Junaid Alam</creatorcontrib><creatorcontrib>Munir, Mobeen</creatorcontrib><creatorcontrib>Saleem, Muhammad Shoaib</creatorcontrib><creatorcontrib>Iqbal, Zaffar</creatorcontrib><title>Sharp bounds for partition dimension of generalized Möbius ladders</title><title>Open mathematics (Warsaw, Poland)</title><description>The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, ( , ) and networks. In this article, we give the sharp upper bounds and lower bounds for the partition dimension of generalized Möbius ladders, , for all ≥3 and ≥2.</description><subject>05C12</subject><subject>05C15</subject><subject>05C78</subject><subject>Generalized Möbius Ladder</subject><subject>Ladders</subject><subject>Lower bounds</subject><subject>Metric dimension</subject><subject>Metric space</subject><subject>Optimization</subject><subject>Partition dimension</subject><subject>Upper bounds</subject><issn>2391-5455</issn><issn>2391-5455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkL9OwzAQxiMEElXpyhyJOcVnx3E8MKCKP5VADMBsXWynTZXGxU6EyoPxArwYCUHAwHL3yb7vu9Mvik6BzIEDP99iu04ogTwhQORBNKFMQsJTzg__6ONoFsKGENJ7iACYRIvHNfpdXLiuMSEunY936NuqrVwTm2prmzAoV8Yr21iPdfVmTXz_8V5UXYhrNMb6cBIdlVgHO_vu0-j5-uppcZvcPdwsF5d3iU6paBPMhChoKiUzmhuBPKUlZoyYjLOSSykLwIL1hVOE_seiMDkvmDUcQJaGTaPlmGscbtTOV1v0e-WwUl8Pzq_UcLuurSq5yVFrrklK04wwLIjO0aCxGaS0GLLOxqyddy-dDa3auM43_fmK9qSoEJzKfmo-TmnvQvC2_NkKRA3c1cBdDdzVwL03XIyGV6xb641d-W7fi9_0_42QAdCcsU_jC4rx</recordid><startdate>20181108</startdate><enddate>20181108</enddate><creator>Hussain, Zafar</creator><creator>Khan, Junaid Alam</creator><creator>Munir, Mobeen</creator><creator>Saleem, Muhammad Shoaib</creator><creator>Iqbal, Zaffar</creator><general>De Gruyter</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20181108</creationdate><title>Sharp bounds for partition dimension of generalized Möbius ladders</title><author>Hussain, Zafar ; Khan, Junaid Alam ; Munir, Mobeen ; Saleem, Muhammad Shoaib ; Iqbal, Zaffar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>05C12</topic><topic>05C15</topic><topic>05C78</topic><topic>Generalized Möbius Ladder</topic><topic>Ladders</topic><topic>Lower bounds</topic><topic>Metric dimension</topic><topic>Metric space</topic><topic>Optimization</topic><topic>Partition dimension</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Zafar</creatorcontrib><creatorcontrib>Khan, Junaid Alam</creatorcontrib><creatorcontrib>Munir, Mobeen</creatorcontrib><creatorcontrib>Saleem, Muhammad Shoaib</creatorcontrib><creatorcontrib>Iqbal, Zaffar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Open mathematics (Warsaw, Poland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Zafar</au><au>Khan, Junaid Alam</au><au>Munir, Mobeen</au><au>Saleem, Muhammad Shoaib</au><au>Iqbal, Zaffar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp bounds for partition dimension of generalized Möbius ladders</atitle><jtitle>Open mathematics (Warsaw, Poland)</jtitle><date>2018-11-08</date><risdate>2018</risdate><volume>16</volume><issue>1</issue><spage>1283</spage><epage>1290</epage><pages>1283-1290</pages><issn>2391-5455</issn><eissn>2391-5455</eissn><abstract>The concept of minimal resolving partition and resolving set plays a pivotal role in diverse areas such as robot navigation, networking, optimization, mastermind games and coin weighing. It is hard to compute exact values of partition dimension for a graphic metric space, ( , ) and networks. In this article, we give the sharp upper bounds and lower bounds for the partition dimension of generalized Möbius ladders, , for all ≥3 and ≥2.</abstract><cop>Warsaw</cop><pub>De Gruyter</pub><doi>10.1515/math-2018-0109</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2391-5455
ispartof Open mathematics (Warsaw, Poland), 2018-11, Vol.16 (1), p.1283-1290
issn 2391-5455
2391-5455
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f5d8acc5c0424603ab0c8adade6142bd
source Publicly Available Content Database; De Gruyter Open Access Journals
subjects 05C12
05C15
05C78
Generalized Möbius Ladder
Ladders
Lower bounds
Metric dimension
Metric space
Optimization
Partition dimension
Upper bounds
title Sharp bounds for partition dimension of generalized Möbius ladders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20bounds%20for%20partition%20dimension%20of%20generalized%20M%C3%B6bius%20ladders&rft.jtitle=Open%20mathematics%20(Warsaw,%20Poland)&rft.au=Hussain,%20Zafar&rft.date=2018-11-08&rft.volume=16&rft.issue=1&rft.spage=1283&rft.epage=1290&rft.pages=1283-1290&rft.issn=2391-5455&rft.eissn=2391-5455&rft_id=info:doi/10.1515/math-2018-0109&rft_dat=%3Cproquest_doaj_%3E2545277529%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-a677b24993dc5d7a542fa630d653f5999b1ab3b1a52a1fa6ea7d85b3ed5119fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545277529&rft_id=info:pmid/&rfr_iscdi=true