Loading…
High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach
Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold n...
Saved in:
Published in: | ACS omega 2020-10, Vol.5 (42), p.27675-27684 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c04255 |