Loading…

High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach

Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold n...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2020-10, Vol.5 (42), p.27675-27684
Main Authors: Sajed, Samira, Kolahdouz, Mohammadreza, Sadeghi, Mohammad Amin, Razavi, Seyedeh Fatemeh
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293
cites cdi_FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293
container_end_page 27684
container_issue 42
container_start_page 27675
container_title ACS omega
container_volume 5
creator Sajed, Samira
Kolahdouz, Mohammadreza
Sadeghi, Mohammad Amin
Razavi, Seyedeh Fatemeh
description Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb.
doi_str_mv 10.1021/acsomega.0c04255
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5e43f0e4e7b4ea1bb94ff7a4e7031e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5e43f0e4e7b4ea1bb94ff7a4e7031e8</doaj_id><sourcerecordid>2456856399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiNERavSO8ccOZDirzjxBWlZFbrSIiq1PVsTZ5L1KrGDna3UK78cL1kQPXDyeN6ZZ2bsybJ3lFxTwuhHMNGP2MM1MUSwsnyVXTBRkYJywV__Y59nVzHuCSFU1qxm8k12znkSKk4vsp-3tt8Vdxg6H0ZwBvObONsRZutd7rt8i9Dmm2SvfRLdHBblMVrX5_cjhHnaeYfFZ4jYpqDBBzviHKzJVw6G52hjDq7NIf8GZmcdHonBHbNX0xR8cr7NzjoYIl6dzsvs8cvNw_q22H7_ulmvtgWISs6FMjVviKTENBQa1RLKmkbWqgIFNalQAFeU8ZqXjEis07CmNZK3vFUmDa74ZbZZuK2HvZ5SnxCetQerfzt86HUax5oBdVei4B1BgVUjEGjTKNF1FaQ74RTrxPq0sKZDM2K7vMzwAvpScXane_-kq1IJzmQCvD8Bgv9xwDjr0UaDwwAO_SFqJkpZl5KrY99kCTXBxxiw-1uGEn3cBP1nE_RpE1LKhyUlKXrvDyF9Rfx_-C-9DbfJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456856399</pqid></control><display><type>article</type><title>High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach</title><source>PubMed Central Free</source><source>American Chemical Society (ACS) Open Access</source><creator>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin ; Razavi, Seyedeh Fatemeh</creator><creatorcontrib>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin ; Razavi, Seyedeh Fatemeh</creatorcontrib><description>Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.0c04255</identifier><identifier>PMID: 33134731</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS omega, 2020-10, Vol.5 (42), p.27675-27684</ispartof><rights>2020 American Chemical Society</rights><rights>2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293</citedby><cites>FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293</cites><orcidid>0000-0001-6992-6950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.0c04255$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.0c04255$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27080,27924,27925,53791,53793,56762,56812</link.rule.ids></links><search><creatorcontrib>Sajed, Samira</creatorcontrib><creatorcontrib>Kolahdouz, Mohammadreza</creatorcontrib><creatorcontrib>Sadeghi, Mohammad Amin</creatorcontrib><creatorcontrib>Razavi, Seyedeh Fatemeh</creatorcontrib><title>High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiNERavSO8ccOZDirzjxBWlZFbrSIiq1PVsTZ5L1KrGDna3UK78cL1kQPXDyeN6ZZ2bsybJ3lFxTwuhHMNGP2MM1MUSwsnyVXTBRkYJywV__Y59nVzHuCSFU1qxm8k12znkSKk4vsp-3tt8Vdxg6H0ZwBvObONsRZutd7rt8i9Dmm2SvfRLdHBblMVrX5_cjhHnaeYfFZ4jYpqDBBzviHKzJVw6G52hjDq7NIf8GZmcdHonBHbNX0xR8cr7NzjoYIl6dzsvs8cvNw_q22H7_ulmvtgWISs6FMjVviKTENBQa1RLKmkbWqgIFNalQAFeU8ZqXjEis07CmNZK3vFUmDa74ZbZZuK2HvZ5SnxCetQerfzt86HUax5oBdVei4B1BgVUjEGjTKNF1FaQ74RTrxPq0sKZDM2K7vMzwAvpScXane_-kq1IJzmQCvD8Bgv9xwDjr0UaDwwAO_SFqJkpZl5KrY99kCTXBxxiw-1uGEn3cBP1nE_RpE1LKhyUlKXrvDyF9Rfx_-C-9DbfJ</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>Sajed, Samira</creator><creator>Kolahdouz, Mohammadreza</creator><creator>Sadeghi, Mohammad Amin</creator><creator>Razavi, Seyedeh Fatemeh</creator><general>American Chemical Society</general><scope>N~.</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6992-6950</orcidid></search><sort><creationdate>20201027</creationdate><title>High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach</title><author>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin ; Razavi, Seyedeh Fatemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajed, Samira</creatorcontrib><creatorcontrib>Kolahdouz, Mohammadreza</creatorcontrib><creatorcontrib>Sadeghi, Mohammad Amin</creatorcontrib><creatorcontrib>Razavi, Seyedeh Fatemeh</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajed, Samira</au><au>Kolahdouz, Mohammadreza</au><au>Sadeghi, Mohammad Amin</au><au>Razavi, Seyedeh Fatemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2020-10-27</date><risdate>2020</risdate><volume>5</volume><issue>42</issue><spage>27675</spage><epage>27684</epage><pages>27675-27684</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb.</abstract><pub>American Chemical Society</pub><pmid>33134731</pmid><doi>10.1021/acsomega.0c04255</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6992-6950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2020-10, Vol.5 (42), p.27675-27684
issn 2470-1343
2470-1343
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f5e43f0e4e7b4ea1bb94ff7a4e7031e8
source PubMed Central Free; American Chemical Society (ACS) Open Access
title High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Estimation%20of%20Lead%20Ion%20Concentration%20Using%20Smartphone-Based%20Colorimetric%20Analysis%20and%20a%20Machine%20Learning%20Approach&rft.jtitle=ACS%20omega&rft.au=Sajed,%20Samira&rft.date=2020-10-27&rft.volume=5&rft.issue=42&rft.spage=27675&rft.epage=27684&rft.pages=27675-27684&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.0c04255&rft_dat=%3Cproquest_doaj_%3E2456856399%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456856399&rft_id=info:pmid/33134731&rfr_iscdi=true