Loading…
High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach
Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold n...
Saved in:
Published in: | ACS omega 2020-10, Vol.5 (42), p.27675-27684 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293 |
---|---|
cites | cdi_FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293 |
container_end_page | 27684 |
container_issue | 42 |
container_start_page | 27675 |
container_title | ACS omega |
container_volume | 5 |
creator | Sajed, Samira Kolahdouz, Mohammadreza Sadeghi, Mohammad Amin Razavi, Seyedeh Fatemeh |
description | Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb. |
doi_str_mv | 10.1021/acsomega.0c04255 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5e43f0e4e7b4ea1bb94ff7a4e7031e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5e43f0e4e7b4ea1bb94ff7a4e7031e8</doaj_id><sourcerecordid>2456856399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiNERavSO8ccOZDirzjxBWlZFbrSIiq1PVsTZ5L1KrGDna3UK78cL1kQPXDyeN6ZZ2bsybJ3lFxTwuhHMNGP2MM1MUSwsnyVXTBRkYJywV__Y59nVzHuCSFU1qxm8k12znkSKk4vsp-3tt8Vdxg6H0ZwBvObONsRZutd7rt8i9Dmm2SvfRLdHBblMVrX5_cjhHnaeYfFZ4jYpqDBBzviHKzJVw6G52hjDq7NIf8GZmcdHonBHbNX0xR8cr7NzjoYIl6dzsvs8cvNw_q22H7_ulmvtgWISs6FMjVviKTENBQa1RLKmkbWqgIFNalQAFeU8ZqXjEis07CmNZK3vFUmDa74ZbZZuK2HvZ5SnxCetQerfzt86HUax5oBdVei4B1BgVUjEGjTKNF1FaQ74RTrxPq0sKZDM2K7vMzwAvpScXane_-kq1IJzmQCvD8Bgv9xwDjr0UaDwwAO_SFqJkpZl5KrY99kCTXBxxiw-1uGEn3cBP1nE_RpE1LKhyUlKXrvDyF9Rfx_-C-9DbfJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456856399</pqid></control><display><type>article</type><title>High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach</title><source>PubMed Central Free</source><source>American Chemical Society (ACS) Open Access</source><creator>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin ; Razavi, Seyedeh Fatemeh</creator><creatorcontrib>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin ; Razavi, Seyedeh Fatemeh</creatorcontrib><description>Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.0c04255</identifier><identifier>PMID: 33134731</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS omega, 2020-10, Vol.5 (42), p.27675-27684</ispartof><rights>2020 American Chemical Society</rights><rights>2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293</citedby><cites>FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293</cites><orcidid>0000-0001-6992-6950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.0c04255$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.0c04255$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27080,27924,27925,53791,53793,56762,56812</link.rule.ids></links><search><creatorcontrib>Sajed, Samira</creatorcontrib><creatorcontrib>Kolahdouz, Mohammadreza</creatorcontrib><creatorcontrib>Sadeghi, Mohammad Amin</creatorcontrib><creatorcontrib>Razavi, Seyedeh Fatemeh</creatorcontrib><title>High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiNERavSO8ccOZDirzjxBWlZFbrSIiq1PVsTZ5L1KrGDna3UK78cL1kQPXDyeN6ZZ2bsybJ3lFxTwuhHMNGP2MM1MUSwsnyVXTBRkYJywV__Y59nVzHuCSFU1qxm8k12znkSKk4vsp-3tt8Vdxg6H0ZwBvObONsRZutd7rt8i9Dmm2SvfRLdHBblMVrX5_cjhHnaeYfFZ4jYpqDBBzviHKzJVw6G52hjDq7NIf8GZmcdHonBHbNX0xR8cr7NzjoYIl6dzsvs8cvNw_q22H7_ulmvtgWISs6FMjVviKTENBQa1RLKmkbWqgIFNalQAFeU8ZqXjEis07CmNZK3vFUmDa74ZbZZuK2HvZ5SnxCetQerfzt86HUax5oBdVei4B1BgVUjEGjTKNF1FaQ74RTrxPq0sKZDM2K7vMzwAvpScXane_-kq1IJzmQCvD8Bgv9xwDjr0UaDwwAO_SFqJkpZl5KrY99kCTXBxxiw-1uGEn3cBP1nE_RpE1LKhyUlKXrvDyF9Rfx_-C-9DbfJ</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>Sajed, Samira</creator><creator>Kolahdouz, Mohammadreza</creator><creator>Sadeghi, Mohammad Amin</creator><creator>Razavi, Seyedeh Fatemeh</creator><general>American Chemical Society</general><scope>N~.</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6992-6950</orcidid></search><sort><creationdate>20201027</creationdate><title>High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach</title><author>Sajed, Samira ; Kolahdouz, Mohammadreza ; Sadeghi, Mohammad Amin ; Razavi, Seyedeh Fatemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajed, Samira</creatorcontrib><creatorcontrib>Kolahdouz, Mohammadreza</creatorcontrib><creatorcontrib>Sadeghi, Mohammad Amin</creatorcontrib><creatorcontrib>Razavi, Seyedeh Fatemeh</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajed, Samira</au><au>Kolahdouz, Mohammadreza</au><au>Sadeghi, Mohammad Amin</au><au>Razavi, Seyedeh Fatemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2020-10-27</date><risdate>2020</risdate><volume>5</volume><issue>42</issue><spage>27675</spage><epage>27684</epage><pages>27675-27684</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Traditional methods for detection of lead ions in water samples are costly and time-consuming. In this work, an accurate smartphone-based colorimetric sensor was developed utilizing a novel machine learning algorithm. In the presence of Pb2+ ions in the solution of specifically functionalized gold nanoparticles, the color of solution turns from red to purple. Indeed, the color variation of the solution is proportional to Pb2+ concentration. The smartphone camera captures the corresponding color change, and the image is processed by an efficient artificial intelligence protocol. The nonlinear regression approach was used for concentration estimation, in which the parameters of the proposed model are obtained using a new feature extraction algorithm. In prediction of Pb2+ concentration, the average absolute error and root-mean-square error were 0.094 and 0.124, respectively. The influence of pH of the medium, temperature, oligonucleotide concentration, and reaction time on the performance of the proposed sensor was carefully investigated and understood to achieve the best sensor response. This novel sensor exhibited good linearity for the detection of Pb2+ in the concentration range of 0.5–2000 ppb with a detection limit of 0.5 ppb.</abstract><pub>American Chemical Society</pub><pmid>33134731</pmid><doi>10.1021/acsomega.0c04255</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6992-6950</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-1343 |
ispartof | ACS omega, 2020-10, Vol.5 (42), p.27675-27684 |
issn | 2470-1343 2470-1343 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f5e43f0e4e7b4ea1bb94ff7a4e7031e8 |
source | PubMed Central Free; American Chemical Society (ACS) Open Access |
title | High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Estimation%20of%20Lead%20Ion%20Concentration%20Using%20Smartphone-Based%20Colorimetric%20Analysis%20and%20a%20Machine%20Learning%20Approach&rft.jtitle=ACS%20omega&rft.au=Sajed,%20Samira&rft.date=2020-10-27&rft.volume=5&rft.issue=42&rft.spage=27675&rft.epage=27684&rft.pages=27675-27684&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.0c04255&rft_dat=%3Cproquest_doaj_%3E2456856399%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a476t-9c83b0610cb1ab9d012bb6897a9a807e4a39123835206e8168cdc63d3d9c68293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456856399&rft_id=info:pmid/33134731&rfr_iscdi=true |