Loading…

Structural basis for functional interactions in dimers of SLC26 transporters

The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeri...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-05, Vol.10 (1), p.2032-10, Article 2032
Main Authors: Chang, Yung-Ning, Jaumann, Eva A., Reichel, Katrin, Hartmann, Julia, Oliver, Dominik, Hummer, Gerhard, Joseph, Benesh, Geertsma, Eric R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeric, SLC26 proteins form structural and functional dimers in the lipid membrane. Here we resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize its functional relevance by combining PELDOR/DEER distance measurements and biochemical studies with MD simulations and spin-label ensemble refinement. Our structural model reveals a unique interface different from the SLC4 and SLC23 families. The functionally relevant STAS domain is no prerequisite for dimerization. Characterization of heterodimers indicates that protomers in the dimer functionally interact. The combined structural and functional data define the framework for a mechanistic understanding of functional cooperativity in SLC26 dimers. The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. Here, the authors resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize it by PELDOR/DEER distance measurements, biochemical studies with MD simulations and spin-label ensemble refinement.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10001-w