Loading…

Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery

To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unman...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2024-12, Vol.14 (12), p.2751
Main Authors: Cai, Wenxi, Lu, Kunbiao, Fan, Mengtao, Liu, Changjiang, Huang, Wenjie, Chen, Jiaju, Wu, Zaoming, Xu, Chudong, Ma, Xu, Tan, Suiyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053
container_end_page
container_issue 12
container_start_page 2751
container_title Agronomy (Basel)
container_volume 14
creator Cai, Wenxi
Lu, Kunbiao
Fan, Mengtao
Liu, Changjiang
Huang, Wenjie
Chen, Jiaju
Wu, Zaoming
Xu, Chudong
Ma, Xu
Tan, Suiyan
description To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future.
doi_str_mv 10.3390/agronomy14122751
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5f01d1eede94ccaaa5da0e9ce176834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821603311</galeid><doaj_id>oai_doaj_org_article_f5f01d1eede94ccaaa5da0e9ce176834</doaj_id><sourcerecordid>A821603311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053</originalsourceid><addsrcrecordid>eNpdUV1LwzAULaLgmHv3seBzZz6atHmcQ-dgMFAn-BTu0tsuY2tm2m3s35tZETF5yOHce8494UbRLSVDzhW5h8q72m1PNKWMZYJeRD1GMp6kXInLP_g6GjTNmoSjKM9J1osmL9ZgPPHu2K6S1xYqjF_QuKq2rXV1_AANFnEA0-3Ou0PAH_PZ_JDHR9uu4sXoPRSCxp9uoqsSNg0Oft5-tHh6fBs_J7P5ZDoezRLDhGoThYwuJbAsz7lKVcbUUioOTKYSQcilkKqUXJZMIBE0F4gm8KxIMyJNTgTvR9POt3Cw1jtvt-BP2oHV34TzlQbfWrNBXYqS0IIiFqhSYwBAFEBQGaSZzHkavO46r_C1zz02rV67va9DfM1pqgTlkp0nDruuCoKprUvXejDhFri1xtVY2sCPckYl4ZzSICCdwHjXNB7L35iU6PO69P918S-YIIcl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149513625</pqid></control><display><type>article</type><title>Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Cai, Wenxi ; Lu, Kunbiao ; Fan, Mengtao ; Liu, Changjiang ; Huang, Wenjie ; Chen, Jiaju ; Wu, Zaoming ; Xu, Chudong ; Ma, Xu ; Tan, Suiyan</creator><creatorcontrib>Cai, Wenxi ; Lu, Kunbiao ; Fan, Mengtao ; Liu, Changjiang ; Huang, Wenjie ; Chen, Jiaju ; Wu, Zaoming ; Xu, Chudong ; Ma, Xu ; Tan, Suiyan</creatorcontrib><description>To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future.</description><identifier>ISSN: 2073-4395</identifier><identifier>EISSN: 2073-4395</identifier><identifier>DOI: 10.3390/agronomy14122751</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Agricultural production ; attention mechanism ; Cameras ; coordinate attention ; Crop yield ; Crop yields ; Crops ; Datasets ; Deep learning ; Drone aircraft ; Edge computing ; Feature extraction ; Field tests ; Floating point arithmetic ; Growth ; Growth stage ; Image quality ; Machine learning ; Mobilenetv3 ; Morphology ; Neural networks ; Optimization ; Parameter identification ; Pixels ; Remote sensing ; Rice ; Rice fields ; rice growth stages ; Unmanned aerial vehicles ; YOLOv8</subject><ispartof>Agronomy (Basel), 2024-12, Vol.14 (12), p.2751</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149513625/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149513625?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Cai, Wenxi</creatorcontrib><creatorcontrib>Lu, Kunbiao</creatorcontrib><creatorcontrib>Fan, Mengtao</creatorcontrib><creatorcontrib>Liu, Changjiang</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Chen, Jiaju</creatorcontrib><creatorcontrib>Wu, Zaoming</creatorcontrib><creatorcontrib>Xu, Chudong</creatorcontrib><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Tan, Suiyan</creatorcontrib><title>Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery</title><title>Agronomy (Basel)</title><description>To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>attention mechanism</subject><subject>Cameras</subject><subject>coordinate attention</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Drone aircraft</subject><subject>Edge computing</subject><subject>Feature extraction</subject><subject>Field tests</subject><subject>Floating point arithmetic</subject><subject>Growth</subject><subject>Growth stage</subject><subject>Image quality</subject><subject>Machine learning</subject><subject>Mobilenetv3</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Rice</subject><subject>Rice fields</subject><subject>rice growth stages</subject><subject>Unmanned aerial vehicles</subject><subject>YOLOv8</subject><issn>2073-4395</issn><issn>2073-4395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUV1LwzAULaLgmHv3seBzZz6atHmcQ-dgMFAn-BTu0tsuY2tm2m3s35tZETF5yOHce8494UbRLSVDzhW5h8q72m1PNKWMZYJeRD1GMp6kXInLP_g6GjTNmoSjKM9J1osmL9ZgPPHu2K6S1xYqjF_QuKq2rXV1_AANFnEA0-3Ou0PAH_PZ_JDHR9uu4sXoPRSCxp9uoqsSNg0Oft5-tHh6fBs_J7P5ZDoezRLDhGoThYwuJbAsz7lKVcbUUioOTKYSQcilkKqUXJZMIBE0F4gm8KxIMyJNTgTvR9POt3Cw1jtvt-BP2oHV34TzlQbfWrNBXYqS0IIiFqhSYwBAFEBQGaSZzHkavO46r_C1zz02rV67va9DfM1pqgTlkp0nDruuCoKprUvXejDhFri1xtVY2sCPckYl4ZzSICCdwHjXNB7L35iU6PO69P918S-YIIcl</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cai, Wenxi</creator><creator>Lu, Kunbiao</creator><creator>Fan, Mengtao</creator><creator>Liu, Changjiang</creator><creator>Huang, Wenjie</creator><creator>Chen, Jiaju</creator><creator>Wu, Zaoming</creator><creator>Xu, Chudong</creator><creator>Ma, Xu</creator><creator>Tan, Suiyan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery</title><author>Cai, Wenxi ; Lu, Kunbiao ; Fan, Mengtao ; Liu, Changjiang ; Huang, Wenjie ; Chen, Jiaju ; Wu, Zaoming ; Xu, Chudong ; Ma, Xu ; Tan, Suiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>attention mechanism</topic><topic>Cameras</topic><topic>coordinate attention</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Drone aircraft</topic><topic>Edge computing</topic><topic>Feature extraction</topic><topic>Field tests</topic><topic>Floating point arithmetic</topic><topic>Growth</topic><topic>Growth stage</topic><topic>Image quality</topic><topic>Machine learning</topic><topic>Mobilenetv3</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Rice</topic><topic>Rice fields</topic><topic>rice growth stages</topic><topic>Unmanned aerial vehicles</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Wenxi</creatorcontrib><creatorcontrib>Lu, Kunbiao</creatorcontrib><creatorcontrib>Fan, Mengtao</creatorcontrib><creatorcontrib>Liu, Changjiang</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Chen, Jiaju</creatorcontrib><creatorcontrib>Wu, Zaoming</creatorcontrib><creatorcontrib>Xu, Chudong</creatorcontrib><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Tan, Suiyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Agronomy (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Wenxi</au><au>Lu, Kunbiao</au><au>Fan, Mengtao</au><au>Liu, Changjiang</au><au>Huang, Wenjie</au><au>Chen, Jiaju</au><au>Wu, Zaoming</au><au>Xu, Chudong</au><au>Ma, Xu</au><au>Tan, Suiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery</atitle><jtitle>Agronomy (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><spage>2751</spage><pages>2751-</pages><issn>2073-4395</issn><eissn>2073-4395</eissn><abstract>To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agronomy14122751</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4395
ispartof Agronomy (Basel), 2024-12, Vol.14 (12), p.2751
issn 2073-4395
2073-4395
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f5f01d1eede94ccaaa5da0e9ce176834
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Agricultural production
attention mechanism
Cameras
coordinate attention
Crop yield
Crop yields
Crops
Datasets
Deep learning
Drone aircraft
Edge computing
Feature extraction
Field tests
Floating point arithmetic
Growth
Growth stage
Image quality
Machine learning
Mobilenetv3
Morphology
Neural networks
Optimization
Parameter identification
Pixels
Remote sensing
Rice
Rice fields
rice growth stages
Unmanned aerial vehicles
YOLOv8
title Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rice%20Growth-Stage%20Recognition%20Based%20on%20Improved%20YOLOv8%20with%20UAV%20Imagery&rft.jtitle=Agronomy%20(Basel)&rft.au=Cai,%20Wenxi&rft.date=2024-12-01&rft.volume=14&rft.issue=12&rft.spage=2751&rft.pages=2751-&rft.issn=2073-4395&rft.eissn=2073-4395&rft_id=info:doi/10.3390/agronomy14122751&rft_dat=%3Cgale_doaj_%3EA821603311%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149513625&rft_id=info:pmid/&rft_galeid=A821603311&rfr_iscdi=true