Loading…
Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery
To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unman...
Saved in:
Published in: | Agronomy (Basel) 2024-12, Vol.14 (12), p.2751 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053 |
container_end_page | |
container_issue | 12 |
container_start_page | 2751 |
container_title | Agronomy (Basel) |
container_volume | 14 |
creator | Cai, Wenxi Lu, Kunbiao Fan, Mengtao Liu, Changjiang Huang, Wenjie Chen, Jiaju Wu, Zaoming Xu, Chudong Ma, Xu Tan, Suiyan |
description | To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future. |
doi_str_mv | 10.3390/agronomy14122751 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5f01d1eede94ccaaa5da0e9ce176834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821603311</galeid><doaj_id>oai_doaj_org_article_f5f01d1eede94ccaaa5da0e9ce176834</doaj_id><sourcerecordid>A821603311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053</originalsourceid><addsrcrecordid>eNpdUV1LwzAULaLgmHv3seBzZz6atHmcQ-dgMFAn-BTu0tsuY2tm2m3s35tZETF5yOHce8494UbRLSVDzhW5h8q72m1PNKWMZYJeRD1GMp6kXInLP_g6GjTNmoSjKM9J1osmL9ZgPPHu2K6S1xYqjF_QuKq2rXV1_AANFnEA0-3Ou0PAH_PZ_JDHR9uu4sXoPRSCxp9uoqsSNg0Oft5-tHh6fBs_J7P5ZDoezRLDhGoThYwuJbAsz7lKVcbUUioOTKYSQcilkKqUXJZMIBE0F4gm8KxIMyJNTgTvR9POt3Cw1jtvt-BP2oHV34TzlQbfWrNBXYqS0IIiFqhSYwBAFEBQGaSZzHkavO46r_C1zz02rV67va9DfM1pqgTlkp0nDruuCoKprUvXejDhFri1xtVY2sCPckYl4ZzSICCdwHjXNB7L35iU6PO69P918S-YIIcl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149513625</pqid></control><display><type>article</type><title>Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Cai, Wenxi ; Lu, Kunbiao ; Fan, Mengtao ; Liu, Changjiang ; Huang, Wenjie ; Chen, Jiaju ; Wu, Zaoming ; Xu, Chudong ; Ma, Xu ; Tan, Suiyan</creator><creatorcontrib>Cai, Wenxi ; Lu, Kunbiao ; Fan, Mengtao ; Liu, Changjiang ; Huang, Wenjie ; Chen, Jiaju ; Wu, Zaoming ; Xu, Chudong ; Ma, Xu ; Tan, Suiyan</creatorcontrib><description>To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future.</description><identifier>ISSN: 2073-4395</identifier><identifier>EISSN: 2073-4395</identifier><identifier>DOI: 10.3390/agronomy14122751</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Agricultural production ; attention mechanism ; Cameras ; coordinate attention ; Crop yield ; Crop yields ; Crops ; Datasets ; Deep learning ; Drone aircraft ; Edge computing ; Feature extraction ; Field tests ; Floating point arithmetic ; Growth ; Growth stage ; Image quality ; Machine learning ; Mobilenetv3 ; Morphology ; Neural networks ; Optimization ; Parameter identification ; Pixels ; Remote sensing ; Rice ; Rice fields ; rice growth stages ; Unmanned aerial vehicles ; YOLOv8</subject><ispartof>Agronomy (Basel), 2024-12, Vol.14 (12), p.2751</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149513625/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149513625?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Cai, Wenxi</creatorcontrib><creatorcontrib>Lu, Kunbiao</creatorcontrib><creatorcontrib>Fan, Mengtao</creatorcontrib><creatorcontrib>Liu, Changjiang</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Chen, Jiaju</creatorcontrib><creatorcontrib>Wu, Zaoming</creatorcontrib><creatorcontrib>Xu, Chudong</creatorcontrib><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Tan, Suiyan</creatorcontrib><title>Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery</title><title>Agronomy (Basel)</title><description>To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>attention mechanism</subject><subject>Cameras</subject><subject>coordinate attention</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Drone aircraft</subject><subject>Edge computing</subject><subject>Feature extraction</subject><subject>Field tests</subject><subject>Floating point arithmetic</subject><subject>Growth</subject><subject>Growth stage</subject><subject>Image quality</subject><subject>Machine learning</subject><subject>Mobilenetv3</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Rice</subject><subject>Rice fields</subject><subject>rice growth stages</subject><subject>Unmanned aerial vehicles</subject><subject>YOLOv8</subject><issn>2073-4395</issn><issn>2073-4395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUV1LwzAULaLgmHv3seBzZz6atHmcQ-dgMFAn-BTu0tsuY2tm2m3s35tZETF5yOHce8494UbRLSVDzhW5h8q72m1PNKWMZYJeRD1GMp6kXInLP_g6GjTNmoSjKM9J1osmL9ZgPPHu2K6S1xYqjF_QuKq2rXV1_AANFnEA0-3Ou0PAH_PZ_JDHR9uu4sXoPRSCxp9uoqsSNg0Oft5-tHh6fBs_J7P5ZDoezRLDhGoThYwuJbAsz7lKVcbUUioOTKYSQcilkKqUXJZMIBE0F4gm8KxIMyJNTgTvR9POt3Cw1jtvt-BP2oHV34TzlQbfWrNBXYqS0IIiFqhSYwBAFEBQGaSZzHkavO46r_C1zz02rV67va9DfM1pqgTlkp0nDruuCoKprUvXejDhFri1xtVY2sCPckYl4ZzSICCdwHjXNB7L35iU6PO69P918S-YIIcl</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cai, Wenxi</creator><creator>Lu, Kunbiao</creator><creator>Fan, Mengtao</creator><creator>Liu, Changjiang</creator><creator>Huang, Wenjie</creator><creator>Chen, Jiaju</creator><creator>Wu, Zaoming</creator><creator>Xu, Chudong</creator><creator>Ma, Xu</creator><creator>Tan, Suiyan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery</title><author>Cai, Wenxi ; Lu, Kunbiao ; Fan, Mengtao ; Liu, Changjiang ; Huang, Wenjie ; Chen, Jiaju ; Wu, Zaoming ; Xu, Chudong ; Ma, Xu ; Tan, Suiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>attention mechanism</topic><topic>Cameras</topic><topic>coordinate attention</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Drone aircraft</topic><topic>Edge computing</topic><topic>Feature extraction</topic><topic>Field tests</topic><topic>Floating point arithmetic</topic><topic>Growth</topic><topic>Growth stage</topic><topic>Image quality</topic><topic>Machine learning</topic><topic>Mobilenetv3</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Rice</topic><topic>Rice fields</topic><topic>rice growth stages</topic><topic>Unmanned aerial vehicles</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Wenxi</creatorcontrib><creatorcontrib>Lu, Kunbiao</creatorcontrib><creatorcontrib>Fan, Mengtao</creatorcontrib><creatorcontrib>Liu, Changjiang</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Chen, Jiaju</creatorcontrib><creatorcontrib>Wu, Zaoming</creatorcontrib><creatorcontrib>Xu, Chudong</creatorcontrib><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Tan, Suiyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Agronomy (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Wenxi</au><au>Lu, Kunbiao</au><au>Fan, Mengtao</au><au>Liu, Changjiang</au><au>Huang, Wenjie</au><au>Chen, Jiaju</au><au>Wu, Zaoming</au><au>Xu, Chudong</au><au>Ma, Xu</au><au>Tan, Suiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery</atitle><jtitle>Agronomy (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><spage>2751</spage><pages>2751-</pages><issn>2073-4395</issn><eissn>2073-4395</eissn><abstract>To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agronomy14122751</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4395 |
ispartof | Agronomy (Basel), 2024-12, Vol.14 (12), p.2751 |
issn | 2073-4395 2073-4395 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f5f01d1eede94ccaaa5da0e9ce176834 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Agricultural production attention mechanism Cameras coordinate attention Crop yield Crop yields Crops Datasets Deep learning Drone aircraft Edge computing Feature extraction Field tests Floating point arithmetic Growth Growth stage Image quality Machine learning Mobilenetv3 Morphology Neural networks Optimization Parameter identification Pixels Remote sensing Rice Rice fields rice growth stages Unmanned aerial vehicles YOLOv8 |
title | Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rice%20Growth-Stage%20Recognition%20Based%20on%20Improved%20YOLOv8%20with%20UAV%20Imagery&rft.jtitle=Agronomy%20(Basel)&rft.au=Cai,%20Wenxi&rft.date=2024-12-01&rft.volume=14&rft.issue=12&rft.spage=2751&rft.pages=2751-&rft.issn=2073-4395&rft.eissn=2073-4395&rft_id=info:doi/10.3390/agronomy14122751&rft_dat=%3Cgale_doaj_%3EA821603311%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-9e21b6a27883949729b693a2646ea56b569f636f25e05185eecea52d4706c8053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149513625&rft_id=info:pmid/&rft_galeid=A821603311&rfr_iscdi=true |