Loading…

Identification of New Angiotensin-Converting Enzyme Inhibitory Peptides Isolated from the Hydrolysate of the Venom of Nemopilema nomurai Jellyfish

Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of jellyfish venom (NnV), demonstrate potent inhibitory activities...

Full description

Saved in:
Bibliographic Details
Published in:Toxins 2024-09, Vol.16 (9), p.410
Main Authors: Mohan Prakash, Ramachandran Loganathan, Ravi, Deva Asirvatham, Hwang, Du Hyeon, Kang, Changkeun, Kim, Euikyung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of jellyfish venom (NnV), demonstrate potent inhibitory activities against angiotensin-converting enzyme (ACE). Proteolytic enzymes-specifically, papain and protamex-were utilized for the hydrolysis under optimized enzymatic conditions, determined by assessing the degree of hydrolysis through the ninhydrin test. Comparative analyses revealed that papain treatment exhibited a notably higher degree of NnV hydrolysis compared to protamex treatment. ACE inhibitory activity was quantified using ACE kit-WST, indicating a substantial inhibitory effect of 76.31% for the papain-digested NnV crude hydrolysate, which was validated by captopril as a positive control. The separation of the NnV-hydrolysate using DEAE sepharose weak-anion-exchange chromatography revealed nine peaks under a 0-1 M NaCl stepwise gradient, with peak no. 3 displaying the highest ACE inhibition of 96%. The further purification of peak no. 3 through ODS-C18 column reverse-phase high-performance liquid chromatography resulted in five sub-peaks (3.1, 3.2, 3.3, 3.4, and 3.5), among which 3.2 exhibited the most significant inhibitory activity of 95.74%. The subsequent analysis of the active peak (3.2) using MALDI-TOF/MS identified two peptides with distinct molecular weights of 896.48 and 1227.651. The peptide sequence determined by MS/MS analysis revealed them as IVGRPLANG and IGDEPRHQYL. The docking studies of the two ACE-inhibitory peptides for ACE molecule demonstrated a binding affinity of -51.4 ± 2.5 and -62.3 ± 3.3 using the HADDOCK scoring function.
ISSN:2072-6651
2072-6651
DOI:10.3390/toxins16090410