Loading…
Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis
Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow...
Saved in:
Published in: | Metals (Basel ) 2020-04, Vol.10 (4), p.532 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3 |
container_end_page | |
container_issue | 4 |
container_start_page | 532 |
container_title | Metals (Basel ) |
container_volume | 10 |
creator | Shvydkiy, Evgeniy Baake, Egbert Köppen, Diana |
description | Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field. |
doi_str_mv | 10.3390/met10040532 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f616505e90d041e69b44714c3b08a2bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f616505e90d041e69b44714c3b08a2bf</doaj_id><sourcerecordid>2394620418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3</originalsourceid><addsrcrecordid>eNpNkclKA0EQhgdRMKgnX2DAo0RrepnlGMSoEFFIPDc1vcQOnemke0bx5kP4hD6JrRGxLrVQ9f0Uf5adFnBBaQOXa90XAAw4JXvZiEDFx6yCYv9ffZidxLiCFDUpoWlG2fPMbger8nvdo8unzr_mT53SIV8EfNHOdsv8Hped7q3Mp1Y79fn-MffOKmusxN76Lp_b9eB2JXYqfxxcTF06_KFNOnRv0cbj7MCgi_rkNx9lT9PrxdXtePZwc3c1mY0lo9CPlWwlQ441KEmlRNIqpTk3TNeqMlw2tYIKCUrCOTWlRNkoJUvOCJqWg6ZH2d2OqzyuxCbYNYY34dGKn4EPS4EhfeO0MGVRcuC6AQWs0GXTMlYVTNIW6iRsEutsx9oEvx107MXKDyE9FAWhDStJOqvT1vluSwYfY9DmT7UA8e2M-OcM_QImrIMt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394620418</pqid></control><display><type>article</type><title>Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis</title><source>Publicly Available Content Database</source><creator>Shvydkiy, Evgeniy ; Baake, Egbert ; Köppen, Diana</creator><creatorcontrib>Shvydkiy, Evgeniy ; Baake, Egbert ; Köppen, Diana</creatorcontrib><description>Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met10040532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Computer simulation ; Efficiency ; Electromagnetic stirring ; Energy ; Flow velocity ; forced convection ; Heat transfer ; liquid metal ; Liquid metals ; Magnetic fields ; Mass transfer ; Mathematical models ; Neutron radiography ; Numerical analysis ; Numerical models ; Permeability ; Pulsation ; Radiography ; Reynolds number ; Simulation ; Solidification ; traveling magnetic field ; Ultrasonic testing ; Unsteady flow ; Velocimetry</subject><ispartof>Metals (Basel ), 2020-04, Vol.10 (4), p.532</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3</citedby><cites>FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3</cites><orcidid>0000-0002-5501-3226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2394620418/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2394620418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Shvydkiy, Evgeniy</creatorcontrib><creatorcontrib>Baake, Egbert</creatorcontrib><creatorcontrib>Köppen, Diana</creatorcontrib><title>Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis</title><title>Metals (Basel )</title><description>Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Electromagnetic stirring</subject><subject>Energy</subject><subject>Flow velocity</subject><subject>forced convection</subject><subject>Heat transfer</subject><subject>liquid metal</subject><subject>Liquid metals</subject><subject>Magnetic fields</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Neutron radiography</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Permeability</subject><subject>Pulsation</subject><subject>Radiography</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Solidification</subject><subject>traveling magnetic field</subject><subject>Ultrasonic testing</subject><subject>Unsteady flow</subject><subject>Velocimetry</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclKA0EQhgdRMKgnX2DAo0RrepnlGMSoEFFIPDc1vcQOnemke0bx5kP4hD6JrRGxLrVQ9f0Uf5adFnBBaQOXa90XAAw4JXvZiEDFx6yCYv9ffZidxLiCFDUpoWlG2fPMbger8nvdo8unzr_mT53SIV8EfNHOdsv8Hped7q3Mp1Y79fn-MffOKmusxN76Lp_b9eB2JXYqfxxcTF06_KFNOnRv0cbj7MCgi_rkNx9lT9PrxdXtePZwc3c1mY0lo9CPlWwlQ441KEmlRNIqpTk3TNeqMlw2tYIKCUrCOTWlRNkoJUvOCJqWg6ZH2d2OqzyuxCbYNYY34dGKn4EPS4EhfeO0MGVRcuC6AQWs0GXTMlYVTNIW6iRsEutsx9oEvx107MXKDyE9FAWhDStJOqvT1vluSwYfY9DmT7UA8e2M-OcM_QImrIMt</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shvydkiy, Evgeniy</creator><creator>Baake, Egbert</creator><creator>Köppen, Diana</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5501-3226</orcidid></search><sort><creationdate>20200401</creationdate><title>Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis</title><author>Shvydkiy, Evgeniy ; Baake, Egbert ; Köppen, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Electromagnetic stirring</topic><topic>Energy</topic><topic>Flow velocity</topic><topic>forced convection</topic><topic>Heat transfer</topic><topic>liquid metal</topic><topic>Liquid metals</topic><topic>Magnetic fields</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Neutron radiography</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Permeability</topic><topic>Pulsation</topic><topic>Radiography</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Solidification</topic><topic>traveling magnetic field</topic><topic>Ultrasonic testing</topic><topic>Unsteady flow</topic><topic>Velocimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shvydkiy, Evgeniy</creatorcontrib><creatorcontrib>Baake, Egbert</creatorcontrib><creatorcontrib>Köppen, Diana</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shvydkiy, Evgeniy</au><au>Baake, Egbert</au><au>Köppen, Diana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis</atitle><jtitle>Metals (Basel )</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>532</spage><pages>532-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met10040532</doi><orcidid>https://orcid.org/0000-0002-5501-3226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4701 |
ispartof | Metals (Basel ), 2020-04, Vol.10 (4), p.532 |
issn | 2075-4701 2075-4701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f616505e90d041e69b44714c3b08a2bf |
source | Publicly Available Content Database |
subjects | Boundary conditions Computer simulation Efficiency Electromagnetic stirring Energy Flow velocity forced convection Heat transfer liquid metal Liquid metals Magnetic fields Mass transfer Mathematical models Neutron radiography Numerical analysis Numerical models Permeability Pulsation Radiography Reynolds number Simulation Solidification traveling magnetic field Ultrasonic testing Unsteady flow Velocimetry |
title | Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20Metal%20Flow%20Under%20Traveling%20Magnetic%20Field%E2%80%94Solidification%20Simulation%20and%20Pulsating%20Flow%20Analysis&rft.jtitle=Metals%20(Basel%20)&rft.au=Shvydkiy,%20Evgeniy&rft.date=2020-04-01&rft.volume=10&rft.issue=4&rft.spage=532&rft.pages=532-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met10040532&rft_dat=%3Cproquest_doaj_%3E2394620418%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394620418&rft_id=info:pmid/&rfr_iscdi=true |