Loading…

Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis

Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2020-04, Vol.10 (4), p.532
Main Authors: Shvydkiy, Evgeniy, Baake, Egbert, Köppen, Diana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3
cites cdi_FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3
container_end_page
container_issue 4
container_start_page 532
container_title Metals (Basel )
container_volume 10
creator Shvydkiy, Evgeniy
Baake, Egbert
Köppen, Diana
description Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field.
doi_str_mv 10.3390/met10040532
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f616505e90d041e69b44714c3b08a2bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f616505e90d041e69b44714c3b08a2bf</doaj_id><sourcerecordid>2394620418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3</originalsourceid><addsrcrecordid>eNpNkclKA0EQhgdRMKgnX2DAo0RrepnlGMSoEFFIPDc1vcQOnemke0bx5kP4hD6JrRGxLrVQ9f0Uf5adFnBBaQOXa90XAAw4JXvZiEDFx6yCYv9ffZidxLiCFDUpoWlG2fPMbger8nvdo8unzr_mT53SIV8EfNHOdsv8Hped7q3Mp1Y79fn-MffOKmusxN76Lp_b9eB2JXYqfxxcTF06_KFNOnRv0cbj7MCgi_rkNx9lT9PrxdXtePZwc3c1mY0lo9CPlWwlQ441KEmlRNIqpTk3TNeqMlw2tYIKCUrCOTWlRNkoJUvOCJqWg6ZH2d2OqzyuxCbYNYY34dGKn4EPS4EhfeO0MGVRcuC6AQWs0GXTMlYVTNIW6iRsEutsx9oEvx107MXKDyE9FAWhDStJOqvT1vluSwYfY9DmT7UA8e2M-OcM_QImrIMt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394620418</pqid></control><display><type>article</type><title>Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis</title><source>Publicly Available Content Database</source><creator>Shvydkiy, Evgeniy ; Baake, Egbert ; Köppen, Diana</creator><creatorcontrib>Shvydkiy, Evgeniy ; Baake, Egbert ; Köppen, Diana</creatorcontrib><description>Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met10040532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Computer simulation ; Efficiency ; Electromagnetic stirring ; Energy ; Flow velocity ; forced convection ; Heat transfer ; liquid metal ; Liquid metals ; Magnetic fields ; Mass transfer ; Mathematical models ; Neutron radiography ; Numerical analysis ; Numerical models ; Permeability ; Pulsation ; Radiography ; Reynolds number ; Simulation ; Solidification ; traveling magnetic field ; Ultrasonic testing ; Unsteady flow ; Velocimetry</subject><ispartof>Metals (Basel ), 2020-04, Vol.10 (4), p.532</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3</citedby><cites>FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3</cites><orcidid>0000-0002-5501-3226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2394620418/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2394620418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Shvydkiy, Evgeniy</creatorcontrib><creatorcontrib>Baake, Egbert</creatorcontrib><creatorcontrib>Köppen, Diana</creatorcontrib><title>Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis</title><title>Metals (Basel )</title><description>Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Electromagnetic stirring</subject><subject>Energy</subject><subject>Flow velocity</subject><subject>forced convection</subject><subject>Heat transfer</subject><subject>liquid metal</subject><subject>Liquid metals</subject><subject>Magnetic fields</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Neutron radiography</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Permeability</subject><subject>Pulsation</subject><subject>Radiography</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Solidification</subject><subject>traveling magnetic field</subject><subject>Ultrasonic testing</subject><subject>Unsteady flow</subject><subject>Velocimetry</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclKA0EQhgdRMKgnX2DAo0RrepnlGMSoEFFIPDc1vcQOnemke0bx5kP4hD6JrRGxLrVQ9f0Uf5adFnBBaQOXa90XAAw4JXvZiEDFx6yCYv9ffZidxLiCFDUpoWlG2fPMbger8nvdo8unzr_mT53SIV8EfNHOdsv8Hped7q3Mp1Y79fn-MffOKmusxN76Lp_b9eB2JXYqfxxcTF06_KFNOnRv0cbj7MCgi_rkNx9lT9PrxdXtePZwc3c1mY0lo9CPlWwlQ441KEmlRNIqpTk3TNeqMlw2tYIKCUrCOTWlRNkoJUvOCJqWg6ZH2d2OqzyuxCbYNYY34dGKn4EPS4EhfeO0MGVRcuC6AQWs0GXTMlYVTNIW6iRsEutsx9oEvx107MXKDyE9FAWhDStJOqvT1vluSwYfY9DmT7UA8e2M-OcM_QImrIMt</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shvydkiy, Evgeniy</creator><creator>Baake, Egbert</creator><creator>Köppen, Diana</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5501-3226</orcidid></search><sort><creationdate>20200401</creationdate><title>Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis</title><author>Shvydkiy, Evgeniy ; Baake, Egbert ; Köppen, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Electromagnetic stirring</topic><topic>Energy</topic><topic>Flow velocity</topic><topic>forced convection</topic><topic>Heat transfer</topic><topic>liquid metal</topic><topic>Liquid metals</topic><topic>Magnetic fields</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Neutron radiography</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Permeability</topic><topic>Pulsation</topic><topic>Radiography</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Solidification</topic><topic>traveling magnetic field</topic><topic>Ultrasonic testing</topic><topic>Unsteady flow</topic><topic>Velocimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shvydkiy, Evgeniy</creatorcontrib><creatorcontrib>Baake, Egbert</creatorcontrib><creatorcontrib>Köppen, Diana</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shvydkiy, Evgeniy</au><au>Baake, Egbert</au><au>Köppen, Diana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis</atitle><jtitle>Metals (Basel )</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>532</spage><pages>532-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Non steady applied magnetic field impact on a liquid metal has good prospects for industry. For a better understanding of heat and mass transfer processes under these circumstances, numerical simulations are needed. A combination of finite elements and volumes methods was used to calculate the flow and solidification of liquid metal under electromagnetic influence. Validation of numerical results was carried out by means of measuring with ultrasound Doppler velocimetry technique, as well as with neutron radiography snapshots of the position and shape of the solid/liquid interface. As a result of the first part of the work, a numerical model of electromagnetic stirring and solidification was developed and validated. This model could be an effective tool for analyzing the electromagnetic stirring during the solidification process. In the second part, the dependences of the velocity pulsation amplitude and the melt velocity maximum value on the magnetic field pulsation frequency are obtained. The ability of the pulsating force to develop higher values of the liquid metal velocity at a frequency close to the MHD resonance was found numerically. The obtained characteristics give a more detailed description of the electrically conductive liquid behaviour under action of pulsating traveling magnetic field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met10040532</doi><orcidid>https://orcid.org/0000-0002-5501-3226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2020-04, Vol.10 (4), p.532
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f616505e90d041e69b44714c3b08a2bf
source Publicly Available Content Database
subjects Boundary conditions
Computer simulation
Efficiency
Electromagnetic stirring
Energy
Flow velocity
forced convection
Heat transfer
liquid metal
Liquid metals
Magnetic fields
Mass transfer
Mathematical models
Neutron radiography
Numerical analysis
Numerical models
Permeability
Pulsation
Radiography
Reynolds number
Simulation
Solidification
traveling magnetic field
Ultrasonic testing
Unsteady flow
Velocimetry
title Liquid Metal Flow Under Traveling Magnetic Field—Solidification Simulation and Pulsating Flow Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20Metal%20Flow%20Under%20Traveling%20Magnetic%20Field%E2%80%94Solidification%20Simulation%20and%20Pulsating%20Flow%20Analysis&rft.jtitle=Metals%20(Basel%20)&rft.au=Shvydkiy,%20Evgeniy&rft.date=2020-04-01&rft.volume=10&rft.issue=4&rft.spage=532&rft.pages=532-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met10040532&rft_dat=%3Cproquest_doaj_%3E2394620418%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-dcbc4a5a80dc3cca2bdde55f4e8d7f5c98d07a2ac2553f6cac9ddc6542afb50e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394620418&rft_id=info:pmid/&rfr_iscdi=true