Loading…

MYCN upregulates the transsulfuration pathway to suppress the ferroptotic vulnerability in MYCN -amplified neuroblastoma

Ferroptosis is an iron-dependent, oxidative form of cell death that is countered mainly by glutathione peroxidase 4 (GPX4) and the production of glutathione (GSH), which is formed from cysteine. The identification of the cancers that may benefit from pharmacological ferroptotic induction is just eme...

Full description

Saved in:
Bibliographic Details
Published in:Cell Stress 2022-02, Vol.6 (2), p.21-29
Main Authors: Floros, Konstantinos V, Chawla, Ayesha T, Johnson-Berro, Mia O, Khatri, Rishabh, Stamatouli, Angeliki M, Boikos, Sosipatros A, Dozmorov, Mikhail G, Cowart, L Ashley, Faber, Anthony C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-cc61dabe713567cdaa7c3fe4020a554ea0fd9128b50bd283d1b139e216383ad03
cites
container_end_page 29
container_issue 2
container_start_page 21
container_title Cell Stress
container_volume 6
creator Floros, Konstantinos V
Chawla, Ayesha T
Johnson-Berro, Mia O
Khatri, Rishabh
Stamatouli, Angeliki M
Boikos, Sosipatros A
Dozmorov, Mikhail G
Cowart, L Ashley
Faber, Anthony C
description Ferroptosis is an iron-dependent, oxidative form of cell death that is countered mainly by glutathione peroxidase 4 (GPX4) and the production of glutathione (GSH), which is formed from cysteine. The identification of the cancers that may benefit from pharmacological ferroptotic induction is just emerging. We recently demonstrated that inducing ferroptosis genetically or pharmacologically in -amplified neuroblastoma (NB) is a novel and effective way to kill these cells. MYCN increases iron metabolism and subsequent hydroxyl radicals through increased expression of the transferrin receptor 1 (TfR1) and low levels of the ferroportin receptor. To counter increased hydroxyl radicals, MYCN binds to the promoter of (solute carrier family 3 member 2). SLC3A2 is a subunit of system Xc-, which is the cysteine-glutamate antiporter that exports glutamate and imports cystine. Cystine is converted to cysteine intracellularly. Here, we investigated other ways MYCN may increase cysteine levels. By performing metabolomics in a syngeneic NB cell line either expressing MYCN or GFP, we demonstrate that the transsulfuration pathway is activated by MYCN. Furthermore, we demonstrate that -amplified NB cell lines and tumors have higher levels of cystathionine beta-synthase (CBS), the rate-limiting enzyme in transsulfuration, which leads to higher levels of the thioether cystathionine ( -(2-amino-2-carboxyethyl)-l-homocysteine). In addition, -amplified NB tumors have high levels of methylthioadenosine phosphorylase (MTAP), an enzyme that helps salvage methionine following polyamine metabolism. MYCN directly binds to the promoter of . We propose that MYCN orchestrates both enhanced cystine uptake and enhanced activity of the transsulfuration pathway to counteract increased reactive oxygen species (ROS) from iron-induced Fenton reactions, ultimately contributing to a ferroptosis vulnerability in -amplified neuroblastoma.
doi_str_mv 10.15698/cst2022.02.264
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f618b350f3444237b6c25f6ff722b357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f618b350f3444237b6c25f6ff722b357</doaj_id><sourcerecordid>2629887545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-cc61dabe713567cdaa7c3fe4020a554ea0fd9128b50bd283d1b139e216383ad03</originalsourceid><addsrcrecordid>eNpVkT1vFDEQhlcIRKKQmg65pLmLv3e3QUInIJECNFBQWbNe-86Rd734I-H-PdbdJUqqGY3feWbGb9O8J3hNhOy7K50yxZSuMV1TyV8151RQtsIU89fP8rPmMqU7jDElsmuFfNucMUFazkh73vz7_mfzA5Ulmm3xkE1CeWdQjjCnVLwtEbILM1og7x5gj3JAqSxVnY5Ca2IMSw7ZaXRf_GwiDM67vEduRgf0CqbFO-vMiGZTYhg8pBwmeNe8seCTuTzFi-b31y-_Nter25_fbjafb1eaiz6vtJZkhMG0hAnZ6hGg1cwaXg8DIbgBbMee0G4QeBhpx0YyENabeirrGIyYXTQ3R-4Y4E4t0U0Q9yqAU4dCiFsFsa7vjbKSdAMT2DLOOWXtIDUVVlrbUlrrbWV9OrKWMkxm1GauH-VfQF--zG6ntuFedR2mnNEK-HgCxPC3mJTV5JI23sNsQkmKStp31SMuqvTqKNUxpBSNfRpDsDrYr072K0xrI68dH55v96R_NJv9B4iBrpo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629887545</pqid></control><display><type>article</type><title>MYCN upregulates the transsulfuration pathway to suppress the ferroptotic vulnerability in MYCN -amplified neuroblastoma</title><source>PubMed Central (Open Access)</source><creator>Floros, Konstantinos V ; Chawla, Ayesha T ; Johnson-Berro, Mia O ; Khatri, Rishabh ; Stamatouli, Angeliki M ; Boikos, Sosipatros A ; Dozmorov, Mikhail G ; Cowart, L Ashley ; Faber, Anthony C</creator><creatorcontrib>Floros, Konstantinos V ; Chawla, Ayesha T ; Johnson-Berro, Mia O ; Khatri, Rishabh ; Stamatouli, Angeliki M ; Boikos, Sosipatros A ; Dozmorov, Mikhail G ; Cowart, L Ashley ; Faber, Anthony C</creatorcontrib><description>Ferroptosis is an iron-dependent, oxidative form of cell death that is countered mainly by glutathione peroxidase 4 (GPX4) and the production of glutathione (GSH), which is formed from cysteine. The identification of the cancers that may benefit from pharmacological ferroptotic induction is just emerging. We recently demonstrated that inducing ferroptosis genetically or pharmacologically in -amplified neuroblastoma (NB) is a novel and effective way to kill these cells. MYCN increases iron metabolism and subsequent hydroxyl radicals through increased expression of the transferrin receptor 1 (TfR1) and low levels of the ferroportin receptor. To counter increased hydroxyl radicals, MYCN binds to the promoter of (solute carrier family 3 member 2). SLC3A2 is a subunit of system Xc-, which is the cysteine-glutamate antiporter that exports glutamate and imports cystine. Cystine is converted to cysteine intracellularly. Here, we investigated other ways MYCN may increase cysteine levels. By performing metabolomics in a syngeneic NB cell line either expressing MYCN or GFP, we demonstrate that the transsulfuration pathway is activated by MYCN. Furthermore, we demonstrate that -amplified NB cell lines and tumors have higher levels of cystathionine beta-synthase (CBS), the rate-limiting enzyme in transsulfuration, which leads to higher levels of the thioether cystathionine ( -(2-amino-2-carboxyethyl)-l-homocysteine). In addition, -amplified NB tumors have high levels of methylthioadenosine phosphorylase (MTAP), an enzyme that helps salvage methionine following polyamine metabolism. MYCN directly binds to the promoter of . We propose that MYCN orchestrates both enhanced cystine uptake and enhanced activity of the transsulfuration pathway to counteract increased reactive oxygen species (ROS) from iron-induced Fenton reactions, ultimately contributing to a ferroptosis vulnerability in -amplified neuroblastoma.</description><identifier>ISSN: 2523-0204</identifier><identifier>EISSN: 2523-0204</identifier><identifier>DOI: 10.15698/cst2022.02.264</identifier><identifier>PMID: 35174317</identifier><language>eng</language><publisher>Austria: Shared Science Publishers OG</publisher><subject>cystathionine ; cysteine ; ferroptosis ; methionine ; MYCN-amplified neuroblastoma ; Research Report ; transsulfuration pathway</subject><ispartof>Cell Stress, 2022-02, Vol.6 (2), p.21-29</ispartof><rights>Copyright: © 2022 Floros et al.</rights><rights>Copyright: © 2022 Floros et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-cc61dabe713567cdaa7c3fe4020a554ea0fd9128b50bd283d1b139e216383ad03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802432/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802432/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35174317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Floros, Konstantinos V</creatorcontrib><creatorcontrib>Chawla, Ayesha T</creatorcontrib><creatorcontrib>Johnson-Berro, Mia O</creatorcontrib><creatorcontrib>Khatri, Rishabh</creatorcontrib><creatorcontrib>Stamatouli, Angeliki M</creatorcontrib><creatorcontrib>Boikos, Sosipatros A</creatorcontrib><creatorcontrib>Dozmorov, Mikhail G</creatorcontrib><creatorcontrib>Cowart, L Ashley</creatorcontrib><creatorcontrib>Faber, Anthony C</creatorcontrib><title>MYCN upregulates the transsulfuration pathway to suppress the ferroptotic vulnerability in MYCN -amplified neuroblastoma</title><title>Cell Stress</title><addtitle>Cell Stress</addtitle><description>Ferroptosis is an iron-dependent, oxidative form of cell death that is countered mainly by glutathione peroxidase 4 (GPX4) and the production of glutathione (GSH), which is formed from cysteine. The identification of the cancers that may benefit from pharmacological ferroptotic induction is just emerging. We recently demonstrated that inducing ferroptosis genetically or pharmacologically in -amplified neuroblastoma (NB) is a novel and effective way to kill these cells. MYCN increases iron metabolism and subsequent hydroxyl radicals through increased expression of the transferrin receptor 1 (TfR1) and low levels of the ferroportin receptor. To counter increased hydroxyl radicals, MYCN binds to the promoter of (solute carrier family 3 member 2). SLC3A2 is a subunit of system Xc-, which is the cysteine-glutamate antiporter that exports glutamate and imports cystine. Cystine is converted to cysteine intracellularly. Here, we investigated other ways MYCN may increase cysteine levels. By performing metabolomics in a syngeneic NB cell line either expressing MYCN or GFP, we demonstrate that the transsulfuration pathway is activated by MYCN. Furthermore, we demonstrate that -amplified NB cell lines and tumors have higher levels of cystathionine beta-synthase (CBS), the rate-limiting enzyme in transsulfuration, which leads to higher levels of the thioether cystathionine ( -(2-amino-2-carboxyethyl)-l-homocysteine). In addition, -amplified NB tumors have high levels of methylthioadenosine phosphorylase (MTAP), an enzyme that helps salvage methionine following polyamine metabolism. MYCN directly binds to the promoter of . We propose that MYCN orchestrates both enhanced cystine uptake and enhanced activity of the transsulfuration pathway to counteract increased reactive oxygen species (ROS) from iron-induced Fenton reactions, ultimately contributing to a ferroptosis vulnerability in -amplified neuroblastoma.</description><subject>cystathionine</subject><subject>cysteine</subject><subject>ferroptosis</subject><subject>methionine</subject><subject>MYCN-amplified neuroblastoma</subject><subject>Research Report</subject><subject>transsulfuration pathway</subject><issn>2523-0204</issn><issn>2523-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkT1vFDEQhlcIRKKQmg65pLmLv3e3QUInIJECNFBQWbNe-86Rd734I-H-PdbdJUqqGY3feWbGb9O8J3hNhOy7K50yxZSuMV1TyV8151RQtsIU89fP8rPmMqU7jDElsmuFfNucMUFazkh73vz7_mfzA5Ulmm3xkE1CeWdQjjCnVLwtEbILM1og7x5gj3JAqSxVnY5Ca2IMSw7ZaXRf_GwiDM67vEduRgf0CqbFO-vMiGZTYhg8pBwmeNe8seCTuTzFi-b31y-_Nter25_fbjafb1eaiz6vtJZkhMG0hAnZ6hGg1cwaXg8DIbgBbMee0G4QeBhpx0YyENabeirrGIyYXTQ3R-4Y4E4t0U0Q9yqAU4dCiFsFsa7vjbKSdAMT2DLOOWXtIDUVVlrbUlrrbWV9OrKWMkxm1GauH-VfQF--zG6ntuFedR2mnNEK-HgCxPC3mJTV5JI23sNsQkmKStp31SMuqvTqKNUxpBSNfRpDsDrYr072K0xrI68dH55v96R_NJv9B4iBrpo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Floros, Konstantinos V</creator><creator>Chawla, Ayesha T</creator><creator>Johnson-Berro, Mia O</creator><creator>Khatri, Rishabh</creator><creator>Stamatouli, Angeliki M</creator><creator>Boikos, Sosipatros A</creator><creator>Dozmorov, Mikhail G</creator><creator>Cowart, L Ashley</creator><creator>Faber, Anthony C</creator><general>Shared Science Publishers OG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220201</creationdate><title>MYCN upregulates the transsulfuration pathway to suppress the ferroptotic vulnerability in MYCN -amplified neuroblastoma</title><author>Floros, Konstantinos V ; Chawla, Ayesha T ; Johnson-Berro, Mia O ; Khatri, Rishabh ; Stamatouli, Angeliki M ; Boikos, Sosipatros A ; Dozmorov, Mikhail G ; Cowart, L Ashley ; Faber, Anthony C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-cc61dabe713567cdaa7c3fe4020a554ea0fd9128b50bd283d1b139e216383ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cystathionine</topic><topic>cysteine</topic><topic>ferroptosis</topic><topic>methionine</topic><topic>MYCN-amplified neuroblastoma</topic><topic>Research Report</topic><topic>transsulfuration pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Floros, Konstantinos V</creatorcontrib><creatorcontrib>Chawla, Ayesha T</creatorcontrib><creatorcontrib>Johnson-Berro, Mia O</creatorcontrib><creatorcontrib>Khatri, Rishabh</creatorcontrib><creatorcontrib>Stamatouli, Angeliki M</creatorcontrib><creatorcontrib>Boikos, Sosipatros A</creatorcontrib><creatorcontrib>Dozmorov, Mikhail G</creatorcontrib><creatorcontrib>Cowart, L Ashley</creatorcontrib><creatorcontrib>Faber, Anthony C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell Stress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Floros, Konstantinos V</au><au>Chawla, Ayesha T</au><au>Johnson-Berro, Mia O</au><au>Khatri, Rishabh</au><au>Stamatouli, Angeliki M</au><au>Boikos, Sosipatros A</au><au>Dozmorov, Mikhail G</au><au>Cowart, L Ashley</au><au>Faber, Anthony C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MYCN upregulates the transsulfuration pathway to suppress the ferroptotic vulnerability in MYCN -amplified neuroblastoma</atitle><jtitle>Cell Stress</jtitle><addtitle>Cell Stress</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>6</volume><issue>2</issue><spage>21</spage><epage>29</epage><pages>21-29</pages><issn>2523-0204</issn><eissn>2523-0204</eissn><abstract>Ferroptosis is an iron-dependent, oxidative form of cell death that is countered mainly by glutathione peroxidase 4 (GPX4) and the production of glutathione (GSH), which is formed from cysteine. The identification of the cancers that may benefit from pharmacological ferroptotic induction is just emerging. We recently demonstrated that inducing ferroptosis genetically or pharmacologically in -amplified neuroblastoma (NB) is a novel and effective way to kill these cells. MYCN increases iron metabolism and subsequent hydroxyl radicals through increased expression of the transferrin receptor 1 (TfR1) and low levels of the ferroportin receptor. To counter increased hydroxyl radicals, MYCN binds to the promoter of (solute carrier family 3 member 2). SLC3A2 is a subunit of system Xc-, which is the cysteine-glutamate antiporter that exports glutamate and imports cystine. Cystine is converted to cysteine intracellularly. Here, we investigated other ways MYCN may increase cysteine levels. By performing metabolomics in a syngeneic NB cell line either expressing MYCN or GFP, we demonstrate that the transsulfuration pathway is activated by MYCN. Furthermore, we demonstrate that -amplified NB cell lines and tumors have higher levels of cystathionine beta-synthase (CBS), the rate-limiting enzyme in transsulfuration, which leads to higher levels of the thioether cystathionine ( -(2-amino-2-carboxyethyl)-l-homocysteine). In addition, -amplified NB tumors have high levels of methylthioadenosine phosphorylase (MTAP), an enzyme that helps salvage methionine following polyamine metabolism. MYCN directly binds to the promoter of . We propose that MYCN orchestrates both enhanced cystine uptake and enhanced activity of the transsulfuration pathway to counteract increased reactive oxygen species (ROS) from iron-induced Fenton reactions, ultimately contributing to a ferroptosis vulnerability in -amplified neuroblastoma.</abstract><cop>Austria</cop><pub>Shared Science Publishers OG</pub><pmid>35174317</pmid><doi>10.15698/cst2022.02.264</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-0204
ispartof Cell Stress, 2022-02, Vol.6 (2), p.21-29
issn 2523-0204
2523-0204
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f618b350f3444237b6c25f6ff722b357
source PubMed Central (Open Access)
subjects cystathionine
cysteine
ferroptosis
methionine
MYCN-amplified neuroblastoma
Research Report
transsulfuration pathway
title MYCN upregulates the transsulfuration pathway to suppress the ferroptotic vulnerability in MYCN -amplified neuroblastoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MYCN%20upregulates%20the%20transsulfuration%20pathway%20to%20suppress%20the%20ferroptotic%20vulnerability%20in%20MYCN%20-amplified%20neuroblastoma&rft.jtitle=Cell%20Stress&rft.au=Floros,%20Konstantinos%20V&rft.date=2022-02-01&rft.volume=6&rft.issue=2&rft.spage=21&rft.epage=29&rft.pages=21-29&rft.issn=2523-0204&rft.eissn=2523-0204&rft_id=info:doi/10.15698/cst2022.02.264&rft_dat=%3Cproquest_doaj_%3E2629887545%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-cc61dabe713567cdaa7c3fe4020a554ea0fd9128b50bd283d1b139e216383ad03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629887545&rft_id=info:pmid/35174317&rfr_iscdi=true