Loading…

An improved method for quality control of in situ data from Argo floats using α convex hulls

An improved method for detecting abnormal oceanic in situ temperature and salinity (T/S) profiles is developed. This procedure extends previous method developed by Udaya Bhaskar et al. [2017]. This method utilizes World Ocean Atlas 2013 gridded climatology which is on 0.25° x 0.25° resolution to bui...

Full description

Saved in:
Bibliographic Details
Published in:MethodsX 2021-01, Vol.8, p.101337-101337, Article 101337
Main Authors: Shesu, R. Venkat, Bhaskar, T.V.S. Udaya, Rao, E. Pattabhi Rama, Ravichandran, M., Rao, B. Venkateswara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-46395bedb4b3d42f686c10daa82423286c424d2e9d6d04f84cb1dba1f296b9333
cites cdi_FETCH-LOGICAL-c494t-46395bedb4b3d42f686c10daa82423286c424d2e9d6d04f84cb1dba1f296b9333
container_end_page 101337
container_issue
container_start_page 101337
container_title MethodsX
container_volume 8
creator Shesu, R. Venkat
Bhaskar, T.V.S. Udaya
Rao, E. Pattabhi Rama
Ravichandran, M.
Rao, B. Venkateswara
description An improved method for detecting abnormal oceanic in situ temperature and salinity (T/S) profiles is developed. This procedure extends previous method developed by Udaya Bhaskar et al. [2017]. This method utilizes World Ocean Atlas 2013 gridded climatology which is on 0.25° x 0.25° resolution to build α convex hulls. These α shapes are then used to categorize good and bad in situ T/S data profiles. This extended method classify the entire profiles instead of data for standard depths to avoid any errors introduced by interpolation to standard depths. Like in previous method, an 'n' sided polygon (convex hull) encompassing the T/S profile data is constructed using Jarvis March algorithm and Points In Polygon (PIP) principle is employed to judge the profile as good or bad. Extensive sensitivity experiments were done for arriving at the optimal α value such that false positives and true negatives are minimized. All types of issues associated with the in situ oceanographic data are identified and quality flag assigned. Examples of this improved method as applied to few Argo floats are presented.•The T/S profiles corresponding to region of interest are used to build α convex hulls.•This extended method can be effectively used for quality control of entire profile and clearly demarcate the profile as good/bad.•This method has the advantage of treating bulk of oceanographic in situ profiles data in a single go which filters out erroneous profile data from the good. [Display omitted]
doi_str_mv 10.1016/j.mex.2021.101337
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f63c5162c8864b7fa15657910023186c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2215016121001308</els_id><doaj_id>oai_doaj_org_article_f63c5162c8864b7fa15657910023186c</doaj_id><sourcerecordid>2564486147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-46395bedb4b3d42f686c10daa82423286c424d2e9d6d04f84cb1dba1f296b9333</originalsourceid><addsrcrecordid>eNp9UctqHDEQHEyCbRx_QG465rIbPXo0MwQCi8nDYPDFPgah0WNXi2a0ljSL_Vn-kXxTNBkT7EtO3a2uqm51VdVHgtcEE_55vx7M45piSuaaseakOqeU1KvSJO9e5WfVZUp7jAsIGAF6Wp0xAIYp0PPq12ZEbjjEcDQaDSbvgkY2RPQwSe_yE1JhzDF4FCxyI0ouT0jLLJGNYUCbuA3I-iBzQlNy4xb9fp4ZR_OIdpP36UP13kqfzOVLvKjuv3-7u_q5urn9cX21uVkp6CCvgLOu7o3uoWcaqOUtVwRrKduyI6OlAgqamk5zjcG2oHqie0ks7XjfMcYuqutFVwe5F4foBhmfRJBO_H0IcStkzE55Iyxnqiacqrbl0DdWkprXTUcwpoyUSUXr66J1mPrBaGXKAaR_I_q2M7qd2IajaFkDjM_LfHoRiOFhMimLwSVlvJejCVMStOYALSfQFChZoCqGlKKx_8YQLGaXxV4Ul8XsslhcLpwvC8eUgx6diSIpZ0ZltItG5fJj9x_2H33trho</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564486147</pqid></control><display><type>article</type><title>An improved method for quality control of in situ data from Argo floats using α convex hulls</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Shesu, R. Venkat ; Bhaskar, T.V.S. Udaya ; Rao, E. Pattabhi Rama ; Ravichandran, M. ; Rao, B. Venkateswara</creator><creatorcontrib>Shesu, R. Venkat ; Bhaskar, T.V.S. Udaya ; Rao, E. Pattabhi Rama ; Ravichandran, M. ; Rao, B. Venkateswara</creatorcontrib><description>An improved method for detecting abnormal oceanic in situ temperature and salinity (T/S) profiles is developed. This procedure extends previous method developed by Udaya Bhaskar et al. [2017]. This method utilizes World Ocean Atlas 2013 gridded climatology which is on 0.25° x 0.25° resolution to build α convex hulls. These α shapes are then used to categorize good and bad in situ T/S data profiles. This extended method classify the entire profiles instead of data for standard depths to avoid any errors introduced by interpolation to standard depths. Like in previous method, an 'n' sided polygon (convex hull) encompassing the T/S profile data is constructed using Jarvis March algorithm and Points In Polygon (PIP) principle is employed to judge the profile as good or bad. Extensive sensitivity experiments were done for arriving at the optimal α value such that false positives and true negatives are minimized. All types of issues associated with the in situ oceanographic data are identified and quality flag assigned. Examples of this improved method as applied to few Argo floats are presented.•The T/S profiles corresponding to region of interest are used to build α convex hulls.•This extended method can be effectively used for quality control of entire profile and clearly demarcate the profile as good/bad.•This method has the advantage of treating bulk of oceanographic in situ profiles data in a single go which filters out erroneous profile data from the good. [Display omitted]</description><identifier>ISSN: 2215-0161</identifier><identifier>EISSN: 2215-0161</identifier><identifier>DOI: 10.1016/j.mex.2021.101337</identifier><identifier>PMID: 34430242</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Argo floats ; Classification ; In situ data ; Method ; Outliers ; Point in polygon ; α Convex Hulls</subject><ispartof>MethodsX, 2021-01, Vol.8, p.101337-101337, Article 101337</ispartof><rights>2021</rights><rights>2021 The Authors. Published by Elsevier B.V. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-46395bedb4b3d42f686c10daa82423286c424d2e9d6d04f84cb1dba1f296b9333</citedby><cites>FETCH-LOGICAL-c494t-46395bedb4b3d42f686c10daa82423286c424d2e9d6d04f84cb1dba1f296b9333</cites><orcidid>0000-0003-0521-8300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374363/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2215016121001308$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Shesu, R. Venkat</creatorcontrib><creatorcontrib>Bhaskar, T.V.S. Udaya</creatorcontrib><creatorcontrib>Rao, E. Pattabhi Rama</creatorcontrib><creatorcontrib>Ravichandran, M.</creatorcontrib><creatorcontrib>Rao, B. Venkateswara</creatorcontrib><title>An improved method for quality control of in situ data from Argo floats using α convex hulls</title><title>MethodsX</title><description>An improved method for detecting abnormal oceanic in situ temperature and salinity (T/S) profiles is developed. This procedure extends previous method developed by Udaya Bhaskar et al. [2017]. This method utilizes World Ocean Atlas 2013 gridded climatology which is on 0.25° x 0.25° resolution to build α convex hulls. These α shapes are then used to categorize good and bad in situ T/S data profiles. This extended method classify the entire profiles instead of data for standard depths to avoid any errors introduced by interpolation to standard depths. Like in previous method, an 'n' sided polygon (convex hull) encompassing the T/S profile data is constructed using Jarvis March algorithm and Points In Polygon (PIP) principle is employed to judge the profile as good or bad. Extensive sensitivity experiments were done for arriving at the optimal α value such that false positives and true negatives are minimized. All types of issues associated with the in situ oceanographic data are identified and quality flag assigned. Examples of this improved method as applied to few Argo floats are presented.•The T/S profiles corresponding to region of interest are used to build α convex hulls.•This extended method can be effectively used for quality control of entire profile and clearly demarcate the profile as good/bad.•This method has the advantage of treating bulk of oceanographic in situ profiles data in a single go which filters out erroneous profile data from the good. [Display omitted]</description><subject>Argo floats</subject><subject>Classification</subject><subject>In situ data</subject><subject>Method</subject><subject>Outliers</subject><subject>Point in polygon</subject><subject>α Convex Hulls</subject><issn>2215-0161</issn><issn>2215-0161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctqHDEQHEyCbRx_QG465rIbPXo0MwQCi8nDYPDFPgah0WNXi2a0ljSL_Vn-kXxTNBkT7EtO3a2uqm51VdVHgtcEE_55vx7M45piSuaaseakOqeU1KvSJO9e5WfVZUp7jAsIGAF6Wp0xAIYp0PPq12ZEbjjEcDQaDSbvgkY2RPQwSe_yE1JhzDF4FCxyI0ouT0jLLJGNYUCbuA3I-iBzQlNy4xb9fp4ZR_OIdpP36UP13kqfzOVLvKjuv3-7u_q5urn9cX21uVkp6CCvgLOu7o3uoWcaqOUtVwRrKduyI6OlAgqamk5zjcG2oHqie0ks7XjfMcYuqutFVwe5F4foBhmfRJBO_H0IcStkzE55Iyxnqiacqrbl0DdWkprXTUcwpoyUSUXr66J1mPrBaGXKAaR_I_q2M7qd2IajaFkDjM_LfHoRiOFhMimLwSVlvJejCVMStOYALSfQFChZoCqGlKKx_8YQLGaXxV4Ul8XsslhcLpwvC8eUgx6diSIpZ0ZltItG5fJj9x_2H33trho</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Shesu, R. Venkat</creator><creator>Bhaskar, T.V.S. Udaya</creator><creator>Rao, E. Pattabhi Rama</creator><creator>Ravichandran, M.</creator><creator>Rao, B. Venkateswara</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0521-8300</orcidid></search><sort><creationdate>20210101</creationdate><title>An improved method for quality control of in situ data from Argo floats using α convex hulls</title><author>Shesu, R. Venkat ; Bhaskar, T.V.S. Udaya ; Rao, E. Pattabhi Rama ; Ravichandran, M. ; Rao, B. Venkateswara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-46395bedb4b3d42f686c10daa82423286c424d2e9d6d04f84cb1dba1f296b9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Argo floats</topic><topic>Classification</topic><topic>In situ data</topic><topic>Method</topic><topic>Outliers</topic><topic>Point in polygon</topic><topic>α Convex Hulls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shesu, R. Venkat</creatorcontrib><creatorcontrib>Bhaskar, T.V.S. Udaya</creatorcontrib><creatorcontrib>Rao, E. Pattabhi Rama</creatorcontrib><creatorcontrib>Ravichandran, M.</creatorcontrib><creatorcontrib>Rao, B. Venkateswara</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>MethodsX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shesu, R. Venkat</au><au>Bhaskar, T.V.S. Udaya</au><au>Rao, E. Pattabhi Rama</au><au>Ravichandran, M.</au><au>Rao, B. Venkateswara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved method for quality control of in situ data from Argo floats using α convex hulls</atitle><jtitle>MethodsX</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>8</volume><spage>101337</spage><epage>101337</epage><pages>101337-101337</pages><artnum>101337</artnum><issn>2215-0161</issn><eissn>2215-0161</eissn><abstract>An improved method for detecting abnormal oceanic in situ temperature and salinity (T/S) profiles is developed. This procedure extends previous method developed by Udaya Bhaskar et al. [2017]. This method utilizes World Ocean Atlas 2013 gridded climatology which is on 0.25° x 0.25° resolution to build α convex hulls. These α shapes are then used to categorize good and bad in situ T/S data profiles. This extended method classify the entire profiles instead of data for standard depths to avoid any errors introduced by interpolation to standard depths. Like in previous method, an 'n' sided polygon (convex hull) encompassing the T/S profile data is constructed using Jarvis March algorithm and Points In Polygon (PIP) principle is employed to judge the profile as good or bad. Extensive sensitivity experiments were done for arriving at the optimal α value such that false positives and true negatives are minimized. All types of issues associated with the in situ oceanographic data are identified and quality flag assigned. Examples of this improved method as applied to few Argo floats are presented.•The T/S profiles corresponding to region of interest are used to build α convex hulls.•This extended method can be effectively used for quality control of entire profile and clearly demarcate the profile as good/bad.•This method has the advantage of treating bulk of oceanographic in situ profiles data in a single go which filters out erroneous profile data from the good. [Display omitted]</abstract><pub>Elsevier B.V</pub><pmid>34430242</pmid><doi>10.1016/j.mex.2021.101337</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0521-8300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2215-0161
ispartof MethodsX, 2021-01, Vol.8, p.101337-101337, Article 101337
issn 2215-0161
2215-0161
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f63c5162c8864b7fa15657910023186c
source ScienceDirect; PubMed Central
subjects Argo floats
Classification
In situ data
Method
Outliers
Point in polygon
α Convex Hulls
title An improved method for quality control of in situ data from Argo floats using α convex hulls
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20method%20for%20quality%20control%20of%20in%20situ%20data%20from%20Argo%20floats%20using%20%CE%B1%20convex%20hulls&rft.jtitle=MethodsX&rft.au=Shesu,%20R.%20Venkat&rft.date=2021-01-01&rft.volume=8&rft.spage=101337&rft.epage=101337&rft.pages=101337-101337&rft.artnum=101337&rft.issn=2215-0161&rft.eissn=2215-0161&rft_id=info:doi/10.1016/j.mex.2021.101337&rft_dat=%3Cproquest_doaj_%3E2564486147%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-46395bedb4b3d42f686c10daa82423286c424d2e9d6d04f84cb1dba1f296b9333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564486147&rft_id=info:pmid/34430242&rfr_iscdi=true