Loading…

A Pressure-Bearing Microwave Transmission Line for Rapid Energy-Efficient Manufacturing Systems of High-End Composite Parts

Currently, a 2-port microwave transmission line with a glass window is usually used to transmit microwave energy to a pressure vessel while sealing the high-pressure gas. In this situation, the damage of the brittle glass window will inevitably result in disastrous accidents. In this paper, the idea...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of mechanical engineering 2024-12, Vol.37 (1), p.162-14, Article 162
Main Authors: Zhou, Jing, Li, Yingguang, Zhu, Zexin, Qi, Xunyi, Hao, Xiaozhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Currently, a 2-port microwave transmission line with a glass window is usually used to transmit microwave energy to a pressure vessel while sealing the high-pressure gas. In this situation, the damage of the brittle glass window will inevitably result in disastrous accidents. In this paper, the idea of a “2+4”-port microwave transmission line is first proposed to solve this problem. A 4-port waveguide bridge structure is connected to the input port of a traditional 2-port structure, which can release the high-pressure gas safely when the glass window of the 2-port microwave transmitting structure fails. To test this idea, a “2+4”-port microwave transmission line at 2.45 GHz was designed and fabricated. The effectiveness of the whole system in microwave transmission was validated by both simulations and experiments. A high microwave transmittance of more than 97% in the simulation and 91% in the experiment was achieved. The long-time transmission of 15-kW microwave energy, 5 times higher than the previous work, was realized. Moreover, the effectiveness of the transmission line in releasing high-pressure gas (0.6 MPa) was validated by a series of fluid-structure interaction simulations. This research proposes a new transmission structure for transmitting microwave into a pressurized environment safely and efficiently, which can be promoted to a series of applications including vacuum electron devices, microwave ovens, and so on.
ISSN:2192-8258
1000-9345
2192-8258
DOI:10.1186/s10033-024-01147-w