Loading…

Water erosion modeling by the Erosion Potential Method and the Revised Universal Soil Loss Equation: a comparative analysis

Water erosion is the principal degradation process of tropical soils, and its effects can be measured by modeling techniques. Erosion models provide a diagnosis of the soil loss intensity and can support the planning of soil conservation practices. Models with low data requirements, such as the Revi...

Full description

Saved in:
Bibliographic Details
Published in:Revista ambiente & água 2020, Vol.15 (4), p.1-11
Main Authors: Lense, Guilherme Henrique Expedito, Moreira, Rodrigo Santos, Parreiras, Taya Cristo, Santana, Derielsen Brandão, Bolelli, Talyson De Melo, Mincato, Ronaldo Luiz
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water erosion is the principal degradation process of tropical soils, and its effects can be measured by modeling techniques. Erosion models provide a diagnosis of the soil loss intensity and can support the planning of soil conservation practices. Models with low data requirements, such as the Revised Universal Soil Loss Equation (RUSLE) and, more recently, the Erosion Potential Method (EPM), are mainly applied in Brazil. Thus, the objective of this work was to estimate water erosion soil-loss rates using the EPM and RUSLE models on a tropical subbasin, followed by a comparison of their outcomes. The models’ application considered soil physical parameters, edaphoclimatic conditions of the area, land use, and subbasin management practices. The accuracy of the methods was verified using total transported sediment and water discharge data. We compared the models using Pearson's correlation analyses, considering a 5% of significance. We found a predominance of moderate-intensity erosion with average soil loss of 1.17 and 1.46 Mg ha-1 year-1, measured by EPM and RUSLE, respectively. The EPM model underestimated soil losses by 15.27%, and RUSLE overestimated by 19.08%, indicating a higher percentage of areas with high erosion rates (4.60%). The models presented results with a different order of magnitude, but with significant correlations, indicating that both methods pointed out similar zones of intense and light-erosion rates.
ISSN:1980-993X
1980-993X
DOI:10.4136/ambi-agua.2501