Loading…

DeepSkin: A Deep Learning Approach for Skin Cancer Classification

Skin cancer is one of the most rapidly spreading illnesses in the world and because of the limited resources available. Early detection of skin cancer is crucial accurate diagnosis of skin cancer identification for preventive approach in general. Detecting skin cancer at an early stage is challengin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Gururaj, H L, Manju, N., Nagarjun, A., Manjunath Aradhya, V N., Flammini, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Skin cancer is one of the most rapidly spreading illnesses in the world and because of the limited resources available. Early detection of skin cancer is crucial accurate diagnosis of skin cancer identification for preventive approach in general. Detecting skin cancer at an early stage is challenging for dermatologists, as well in recent years, both supervised and unsupervised learning tasks have made extensive use of deep learning. One of these models, Convolutional Neural Networks (CNN), has surpassed all others in object detection and classification tests. The dataset is screened from MNIST: HAM10000 which consists of seven different types of skin lesions with the sample size of 10015 is used for the experimentation. The data pre-processing techniques like sampling, dull razor and segmentation using autoencoder and decoder is used. Transfer learning techniques like DenseNet169 and Resnet 50 were used to train the model to obtain the results.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3274848