Loading…
Hydraulic Risk Assessment on Historic Masonry Bridges Using Hydraulic Open-Source Software and Geomatics Techniques: A Case Study of the “Hannibal Bridge”, Italy
This paper investigates the impact of flood-induced hydrodynamic forces and high discharge on the masonry arch “Hannibal Bridge” (called “Ponte di Annibale” in Italy) using the Hydraulic Engineering Center’s River Analysis Simulation (HEC-RAS) v6.5.0. hydraulic numerical method, incorporating Unmann...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-08, Vol.16 (16), p.2994 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the impact of flood-induced hydrodynamic forces and high discharge on the masonry arch “Hannibal Bridge” (called “Ponte di Annibale” in Italy) using the Hydraulic Engineering Center’s River Analysis Simulation (HEC-RAS) v6.5.0. hydraulic numerical method, incorporating Unmanned Aerial Vehicle (UAV) photogrammetry and aerial Light Detection and Ranging (LIDAR) data for visual analysis. The research highlights the highly transient behavior of fast flood flows, particularly when carrying debris, and their effect on bridge superstructures. Utilizing a Digital Elevation Model to extract cross-sectional and elevation data, the research examined 23 profiles over 800 m of the river. The results indicate that the maximum allowable water depth in front of the bridge is 4.73 m, with a Manning’s coefficient of 0.03 and a longitudinal slope of 9 m per kilometer. Therefore, a novel method to identify the risks through HEC-RAS modeling significantly improves the conservation of masonry bridges by providing precise topographical and hydrological data for accurate simulations. Moreover, the detailed information obtained from LIDAR and UAV photogrammetry about the bridge’s materials and structures can be incorporated into the conservation models. This comprehensive approach ensures that preservation efforts are not only addressing the immediate hydrodynamic threats but are also informed by a thorough understanding of the bridge’s structural and material conditions. Understanding rating curves is essential for water management and flood forecasting, with the study confirming a Manning roughness coefficient of 0.03 as suitable for smooth open-channel flows and emphasizing the importance of geomorphological conditions in hydraulic simulation. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16162994 |