Loading…

Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are two innovative classes of porous coordination polymers. MOFs are three-dimensional materials made up of secondary building blocks comprised of metal ions/clusters and organic ligands whereas COFs are 2D or 3D highly porous or...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-10, Vol.13 (21), p.5602-1-5602-48
Main Authors: Yildirim, Onur, Bonomo, Matteo, Barbero, Nadia, Atzori, Cesare, Civalleri, Bartolomeo, Bonino, Francesca, Viscardi, Guido, Barolo, Claudia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are two innovative classes of porous coordination polymers. MOFs are three-dimensional materials made up of secondary building blocks comprised of metal ions/clusters and organic ligands whereas COFs are 2D or 3D highly porous organic solids made up by light elements (i.e., H, B, C, N, O). Both MOFs and COFs, being highly conjugated scaffolds, are very promising as photoactive materials for applications in photocatalysis and artificial photosynthesis because of their tunable electronic properties, high surface area, remarkable light and thermal stability, easy and relative low-cost synthesis, and structural versatility. These properties make them perfectly suitable for photovoltaic application: throughout this review, we summarize recent advances in the employment of both MOFs and COFs in emerging photovoltaics, namely dye-sensitized solar cells (DSSCs) organic photovoltaic (OPV) and perovskite solar cells (PSCs). MOFs are successfully implemented in DSSCs as photoanodic material or solid-state sensitizers and in PSCs mainly as hole or electron transporting materials. An innovative paradigm, in which the porous conductive polymer acts as standing-alone sensitized photoanode, is exploited too. Conversely, COFs are mostly implemented as photoactive material or as hole transporting material in PSCs.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13215602