Loading…
Quantum Vacuum, Dark Matter, Dark Energy, and Spontaneous Supersymmetry Breaking
We study the behavior of the vacuum condensates characterizing many physical phenomena. We show that condensates due to thermal states, to fields in curved space, and to neutrino mixing, may represent new components of the dark matter, whereas the condensate due to axion-photon mixing can contribute...
Saved in:
Published in: | Advances in high energy physics 2018-01, Vol.2018 (2018), p.1-7 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the behavior of the vacuum condensates characterizing many physical phenomena. We show that condensates due to thermal states, to fields in curved space, and to neutrino mixing, may represent new components of the dark matter, whereas the condensate due to axion-photon mixing can contribute to the dark energy. Moreover, by considering a supersymmetric framework, we show that the nonzero energy of vacuum condensates may induce a spontaneous supersymmetry breaking. |
---|---|
ISSN: | 1687-7357 1687-7365 |
DOI: | 10.1155/2018/9840351 |