Loading…

Perspectives on Advanced Lithium-Sulfur Batteries for Electric Vehicles and Grid-Scale Energy Storage

Intensive increases in electrical energy storage are being driven by electric vehicles (EVs), smart grids, intermittent renewable energy, and decarbonization of the energy economy. Advanced lithium-sulfur batteries (LSBs) are among the most promising candidates, especially for EVs and grid-scale ene...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2024-06, Vol.14 (12), p.990
Main Author: Ni, Wei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intensive increases in electrical energy storage are being driven by electric vehicles (EVs), smart grids, intermittent renewable energy, and decarbonization of the energy economy. Advanced lithium-sulfur batteries (LSBs) are among the most promising candidates, especially for EVs and grid-scale energy storage applications. In this topical review, the recent progress and perspectives of practical LSBs are reviewed and discussed; the challenges and solutions for these LSBs are analyzed and proposed for future practical and large-scale energy storage applications. Major challenges for the shuttle effect, reaction kinetics, and anodes are specifically addressed, and solutions are provided on the basis of recent progress in electrodes, electrolytes, binders, interlayers, conductivity, electrocatalysis, artificial SEI layers, etc. The characterization strategies (including in situ ones) and practical parameters (e.g., cost-effectiveness, battery management/modeling, environmental adaptability) are assessed for crucial automotive/stationary large-scale energy storage applications (i.e., EVs and grid energy storage). This topical review will give insights into the future development of promising Li-S batteries toward practical applications, including EVs and grid storage.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14120990