Loading…

Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm

[Display omitted] •AGDE is utilized to optimize quantum cloning circuit parameters.•The experimental results reveal that AGDE is outperformed the other well-known metaheuristics algorithms.•AGDE is minimized the parameter values of cloning difference error value down to 10−8.•The qualitative and qua...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced research 2021-03, Vol.29, p.147-157
Main Authors: Houssein, Essam H., Mahdy, Mohamed A., Eldin, Manal. G., Shebl, Doaa, Mohamed, Waleed M., Abdel-Aty, Mahmoud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-9aa61668365ee669278466f88bd5cdb6841ecab1c7004040ca26434311bcd0053
cites cdi_FETCH-LOGICAL-c521t-9aa61668365ee669278466f88bd5cdb6841ecab1c7004040ca26434311bcd0053
container_end_page 157
container_issue
container_start_page 147
container_title Journal of advanced research
container_volume 29
creator Houssein, Essam H.
Mahdy, Mohamed A.
Eldin, Manal. G.
Shebl, Doaa
Mohamed, Waleed M.
Abdel-Aty, Mahmoud
description [Display omitted] •AGDE is utilized to optimize quantum cloning circuit parameters.•The experimental results reveal that AGDE is outperformed the other well-known metaheuristics algorithms.•AGDE is minimized the parameter values of cloning difference error value down to 10−8.•The qualitative and quantitative measurements proved the superiority of AGDE. Quantum cloning operation, started with no-go theorem which proved that there is no capability to perform a cloning operation on an unknown quantum state, however, a number of trials proved that we can make approximate quantum state cloning that is still with some errors. To the best of our knowledge, this paper is the first of its kind to attempt using meta-heuristic algorithm such as Adaptive Guided Differential Evolution (AGDE), to tackle the problem of quantum cloning circuit parameters to enhance the cloning fidelity. To investigate the effectiveness of the AGDE, the extensive experiments have demonstrated that the AGDE can achieve outstanding performance compared to other well-known meta-heuristics including; Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA), Enhanced Differential Evolution algorithm with novel control parameter adaptation (PaDE), Improved Multi-operator Differential Evolution Algorithm (IMODE), Parameters with adaptive learning mechanism (PALM), QUasi-Affine TRansformation Evolutionary algorithm (QUATRE), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Cuckoo Search (CS), Bat-inspired Algorithm (BA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). In the present study, AGDE is applied to improve the fidelity of quantum cloning problem and the obtained parameter values minimize the cloning difference error value down to 10-8. Accordingly, the qualitative and quantitative measurements including average, standard deviation, convergence curves of the competitive algorithms over 30 independent runs, proved the superiority of AGDE to enhance the cloning fidelity.
doi_str_mv 10.1016/j.jare.2020.10.001
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f68646a7788b4b70a4deffa8dd8f6f52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2090123220302204</els_id><doaj_id>oai_doaj_org_article_f68646a7788b4b70a4deffa8dd8f6f52</doaj_id><sourcerecordid>2511898899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-9aa61668365ee669278466f88bd5cdb6841ecab1c7004040ca26434311bcd0053</originalsourceid><addsrcrecordid>eNp9kc1u3CAUha2qURKleYEsKi-7mSlgjLFUVaqitokUKZtmja7h4mDZZgJ4pObpizvJqNkUFsDh3I-fUxRXlGwpoeLzsB0g4JYRtgpbQui74pyRlmwoY_z9cV6xs-IyxoHkVknZUnpanFWV5IxQdl7097vkJvfs5r58WmBOy1Tq0c_rWrugF5fKHQSYMGGIZQcRTennEgzkwj2W_eJMloyzFgPOycFY4t6PS3Krbex9cOlx-lCcWBgjXr6MF8XDj--_rm82d_c_b6-_3W10zWjatACCCiErUSMK0bJGciGslJ2ptemE5BQ1dFQ3hPDcNTDBK15R2mlDSF1dFLcHrvEwqF1wE4TfyoNTfwUfegUhOT2iskIKLqBpMp13DQFu0FqQxkgrbM0y6-uBtVu6CY3OrwswvoG-3Zndo-r9XskcSlXzDPj0Agj-acGY1OSixnGEGf0SFasplW0Opc1WdrDq4GMMaI_HUKLWwNWg1sDVGviq5cBz0cd_L3gseY03G74cDJi_fO8wqKgdzhqNC6hT_hP3P_4fmpe-mQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511898899</pqid></control><display><type>article</type><title>Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Houssein, Essam H. ; Mahdy, Mohamed A. ; Eldin, Manal. G. ; Shebl, Doaa ; Mohamed, Waleed M. ; Abdel-Aty, Mahmoud</creator><creatorcontrib>Houssein, Essam H. ; Mahdy, Mohamed A. ; Eldin, Manal. G. ; Shebl, Doaa ; Mohamed, Waleed M. ; Abdel-Aty, Mahmoud</creatorcontrib><description>[Display omitted] •AGDE is utilized to optimize quantum cloning circuit parameters.•The experimental results reveal that AGDE is outperformed the other well-known metaheuristics algorithms.•AGDE is minimized the parameter values of cloning difference error value down to 10−8.•The qualitative and quantitative measurements proved the superiority of AGDE. Quantum cloning operation, started with no-go theorem which proved that there is no capability to perform a cloning operation on an unknown quantum state, however, a number of trials proved that we can make approximate quantum state cloning that is still with some errors. To the best of our knowledge, this paper is the first of its kind to attempt using meta-heuristic algorithm such as Adaptive Guided Differential Evolution (AGDE), to tackle the problem of quantum cloning circuit parameters to enhance the cloning fidelity. To investigate the effectiveness of the AGDE, the extensive experiments have demonstrated that the AGDE can achieve outstanding performance compared to other well-known meta-heuristics including; Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA), Enhanced Differential Evolution algorithm with novel control parameter adaptation (PaDE), Improved Multi-operator Differential Evolution Algorithm (IMODE), Parameters with adaptive learning mechanism (PALM), QUasi-Affine TRansformation Evolutionary algorithm (QUATRE), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Cuckoo Search (CS), Bat-inspired Algorithm (BA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). In the present study, AGDE is applied to improve the fidelity of quantum cloning problem and the obtained parameter values minimize the cloning difference error value down to 10-8. Accordingly, the qualitative and quantitative measurements including average, standard deviation, convergence curves of the competitive algorithms over 30 independent runs, proved the superiority of AGDE to enhance the cloning fidelity.</description><identifier>ISSN: 2090-1232</identifier><identifier>EISSN: 2090-1224</identifier><identifier>DOI: 10.1016/j.jare.2020.10.001</identifier><identifier>PMID: 33842012</identifier><language>eng</language><publisher>Egypt: Elsevier B.V</publisher><subject>Adaptive guided differential evolution ; AGDE ; Cloned qubits ; Cloning fidelity ; Mathematics, Engineering, and Computer Science ; Meta-heuristics ; Quantum cloning</subject><ispartof>Journal of advanced research, 2021-03, Vol.29, p.147-157</ispartof><rights>2021</rights><rights>2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University.</rights><rights>2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-9aa61668365ee669278466f88bd5cdb6841ecab1c7004040ca26434311bcd0053</citedby><cites>FETCH-LOGICAL-c521t-9aa61668365ee669278466f88bd5cdb6841ecab1c7004040ca26434311bcd0053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020354/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2090123220302204$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33842012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Houssein, Essam H.</creatorcontrib><creatorcontrib>Mahdy, Mohamed A.</creatorcontrib><creatorcontrib>Eldin, Manal. G.</creatorcontrib><creatorcontrib>Shebl, Doaa</creatorcontrib><creatorcontrib>Mohamed, Waleed M.</creatorcontrib><creatorcontrib>Abdel-Aty, Mahmoud</creatorcontrib><title>Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm</title><title>Journal of advanced research</title><addtitle>J Adv Res</addtitle><description>[Display omitted] •AGDE is utilized to optimize quantum cloning circuit parameters.•The experimental results reveal that AGDE is outperformed the other well-known metaheuristics algorithms.•AGDE is minimized the parameter values of cloning difference error value down to 10−8.•The qualitative and quantitative measurements proved the superiority of AGDE. Quantum cloning operation, started with no-go theorem which proved that there is no capability to perform a cloning operation on an unknown quantum state, however, a number of trials proved that we can make approximate quantum state cloning that is still with some errors. To the best of our knowledge, this paper is the first of its kind to attempt using meta-heuristic algorithm such as Adaptive Guided Differential Evolution (AGDE), to tackle the problem of quantum cloning circuit parameters to enhance the cloning fidelity. To investigate the effectiveness of the AGDE, the extensive experiments have demonstrated that the AGDE can achieve outstanding performance compared to other well-known meta-heuristics including; Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA), Enhanced Differential Evolution algorithm with novel control parameter adaptation (PaDE), Improved Multi-operator Differential Evolution Algorithm (IMODE), Parameters with adaptive learning mechanism (PALM), QUasi-Affine TRansformation Evolutionary algorithm (QUATRE), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Cuckoo Search (CS), Bat-inspired Algorithm (BA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). In the present study, AGDE is applied to improve the fidelity of quantum cloning problem and the obtained parameter values minimize the cloning difference error value down to 10-8. Accordingly, the qualitative and quantitative measurements including average, standard deviation, convergence curves of the competitive algorithms over 30 independent runs, proved the superiority of AGDE to enhance the cloning fidelity.</description><subject>Adaptive guided differential evolution</subject><subject>AGDE</subject><subject>Cloned qubits</subject><subject>Cloning fidelity</subject><subject>Mathematics, Engineering, and Computer Science</subject><subject>Meta-heuristics</subject><subject>Quantum cloning</subject><issn>2090-1232</issn><issn>2090-1224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1u3CAUha2qURKleYEsKi-7mSlgjLFUVaqitokUKZtmja7h4mDZZgJ4pObpizvJqNkUFsDh3I-fUxRXlGwpoeLzsB0g4JYRtgpbQui74pyRlmwoY_z9cV6xs-IyxoHkVknZUnpanFWV5IxQdl7097vkJvfs5r58WmBOy1Tq0c_rWrugF5fKHQSYMGGIZQcRTennEgzkwj2W_eJMloyzFgPOycFY4t6PS3Krbex9cOlx-lCcWBgjXr6MF8XDj--_rm82d_c_b6-_3W10zWjatACCCiErUSMK0bJGciGslJ2ptemE5BQ1dFQ3hPDcNTDBK15R2mlDSF1dFLcHrvEwqF1wE4TfyoNTfwUfegUhOT2iskIKLqBpMp13DQFu0FqQxkgrbM0y6-uBtVu6CY3OrwswvoG-3Zndo-r9XskcSlXzDPj0Agj-acGY1OSixnGEGf0SFasplW0Opc1WdrDq4GMMaI_HUKLWwNWg1sDVGviq5cBz0cd_L3gseY03G74cDJi_fO8wqKgdzhqNC6hT_hP3P_4fmpe-mQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Houssein, Essam H.</creator><creator>Mahdy, Mohamed A.</creator><creator>Eldin, Manal. G.</creator><creator>Shebl, Doaa</creator><creator>Mohamed, Waleed M.</creator><creator>Abdel-Aty, Mahmoud</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210301</creationdate><title>Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm</title><author>Houssein, Essam H. ; Mahdy, Mohamed A. ; Eldin, Manal. G. ; Shebl, Doaa ; Mohamed, Waleed M. ; Abdel-Aty, Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-9aa61668365ee669278466f88bd5cdb6841ecab1c7004040ca26434311bcd0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive guided differential evolution</topic><topic>AGDE</topic><topic>Cloned qubits</topic><topic>Cloning fidelity</topic><topic>Mathematics, Engineering, and Computer Science</topic><topic>Meta-heuristics</topic><topic>Quantum cloning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houssein, Essam H.</creatorcontrib><creatorcontrib>Mahdy, Mohamed A.</creatorcontrib><creatorcontrib>Eldin, Manal. G.</creatorcontrib><creatorcontrib>Shebl, Doaa</creatorcontrib><creatorcontrib>Mohamed, Waleed M.</creatorcontrib><creatorcontrib>Abdel-Aty, Mahmoud</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of advanced research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houssein, Essam H.</au><au>Mahdy, Mohamed A.</au><au>Eldin, Manal. G.</au><au>Shebl, Doaa</au><au>Mohamed, Waleed M.</au><au>Abdel-Aty, Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm</atitle><jtitle>Journal of advanced research</jtitle><addtitle>J Adv Res</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>29</volume><spage>147</spage><epage>157</epage><pages>147-157</pages><issn>2090-1232</issn><eissn>2090-1224</eissn><abstract>[Display omitted] •AGDE is utilized to optimize quantum cloning circuit parameters.•The experimental results reveal that AGDE is outperformed the other well-known metaheuristics algorithms.•AGDE is minimized the parameter values of cloning difference error value down to 10−8.•The qualitative and quantitative measurements proved the superiority of AGDE. Quantum cloning operation, started with no-go theorem which proved that there is no capability to perform a cloning operation on an unknown quantum state, however, a number of trials proved that we can make approximate quantum state cloning that is still with some errors. To the best of our knowledge, this paper is the first of its kind to attempt using meta-heuristic algorithm such as Adaptive Guided Differential Evolution (AGDE), to tackle the problem of quantum cloning circuit parameters to enhance the cloning fidelity. To investigate the effectiveness of the AGDE, the extensive experiments have demonstrated that the AGDE can achieve outstanding performance compared to other well-known meta-heuristics including; Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA), Enhanced Differential Evolution algorithm with novel control parameter adaptation (PaDE), Improved Multi-operator Differential Evolution Algorithm (IMODE), Parameters with adaptive learning mechanism (PALM), QUasi-Affine TRansformation Evolutionary algorithm (QUATRE), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Cuckoo Search (CS), Bat-inspired Algorithm (BA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). In the present study, AGDE is applied to improve the fidelity of quantum cloning problem and the obtained parameter values minimize the cloning difference error value down to 10-8. Accordingly, the qualitative and quantitative measurements including average, standard deviation, convergence curves of the competitive algorithms over 30 independent runs, proved the superiority of AGDE to enhance the cloning fidelity.</abstract><cop>Egypt</cop><pub>Elsevier B.V</pub><pmid>33842012</pmid><doi>10.1016/j.jare.2020.10.001</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-1232
ispartof Journal of advanced research, 2021-03, Vol.29, p.147-157
issn 2090-1232
2090-1224
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f68646a7788b4b70a4deffa8dd8f6f52
source ScienceDirect Journals; PubMed Central
subjects Adaptive guided differential evolution
AGDE
Cloned qubits
Cloning fidelity
Mathematics, Engineering, and Computer Science
Meta-heuristics
Quantum cloning
title Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20quantum%20cloning%20circuit%20parameters%20based%20on%20adaptive%20guided%20differential%20evolution%20algorithm&rft.jtitle=Journal%20of%20advanced%20research&rft.au=Houssein,%20Essam%20H.&rft.date=2021-03-01&rft.volume=29&rft.spage=147&rft.epage=157&rft.pages=147-157&rft.issn=2090-1232&rft.eissn=2090-1224&rft_id=info:doi/10.1016/j.jare.2020.10.001&rft_dat=%3Cproquest_doaj_%3E2511898899%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-9aa61668365ee669278466f88bd5cdb6841ecab1c7004040ca26434311bcd0053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511898899&rft_id=info:pmid/33842012&rfr_iscdi=true