Loading…
Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease
Growth hormone-releasing hormone (GHRH) is secreted primarily from the hypothalamus, but other tissues, including the lungs, produce it locally. GHRH stimulates the release and secretion of growth hormone (GH) by the pituitary and regulates the production of GH and hepatic insulin-like growth factor...
Saved in:
Published in: | Cells (Basel, Switzerland) Switzerland), 2020-10, Vol.9 (10), p.2331 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Growth hormone-releasing hormone (GHRH) is secreted primarily from the hypothalamus, but other tissues, including the lungs, produce it locally. GHRH stimulates the release and secretion of growth hormone (GH) by the pituitary and regulates the production of GH and hepatic insulin-like growth factor-1 (IGF-1). Pituitary-type GHRH-receptors (GHRH-R) are expressed in human lungs, indicating that GHRH or GH could participate in lung development, growth, and repair. GHRH-R antagonists (i.e., synthetic peptides), which we have tested in various models, exert growth-inhibitory effects in lung cancer cells in vitro and in vivo in addition to having anti-inflammatory, anti-oxidative, and pro-apoptotic effects. One antagonist of the GHRH-R used in recent studies reviewed here, MIA-602, lessens both inflammation and fibrosis in a mouse model of bleomycin lung injury. GHRH and its peptide agonists regulate the proliferation of fibroblasts through the modulation of extracellular signal-regulated kinase (ERK) and Akt pathways. In addition to downregulating GH and IGF-1, GHRH-R antagonist MIA-602 inhibits signaling pathways relevant to inflammation, including p21-activated kinase 1-signal transducer and activator of transcription 3/nuclear factor-kappa B (PAK1-STAT3/NF-κB and ERK). MIA-602 induces fibroblast apoptosis in a dose-dependent manner, which is an effect that is likely important in antifibrotic actions. Taken together, the novel data reviewed here show that GHRH is an important peptide that participates in lung homeostasis, inflammation, wound healing, and cancer; and GHRH-R antagonists may have therapeutic potential in lung diseases. |
---|---|
ISSN: | 2073-4409 2073-4409 |
DOI: | 10.3390/cells9102331 |